Jyoti Godara, Isha Batra, Rajni Aron, Mohammad Shabaz
{"title":"Ensemble Classification Approach for Sarcasm Detection.","authors":"Jyoti Godara, Isha Batra, Rajni Aron, Mohammad Shabaz","doi":"10.1155/2021/9731519","DOIUrl":null,"url":null,"abstract":"<p><p>Cognitive science is a technology which focuses on analyzing the human brain using the application of DM. The databases are utilized to gather and store the large volume of data. The authenticated information is extracted using measures. This research work is based on detecting the sarcasm from the text data. This research work introduces a scheme to detect sarcasm based on PCA algorithm, <i>K</i>-means algorithm, and ensemble classification. The four ensemble classifiers are designed with the objective of detecting the sarcasm. The first ensemble classification algorithm (SKD) is the combination of SVM, KNN, and decision tree. In the second ensemble classifier (SLD), SVM, logistic regression, and decision tree classifiers are combined for the sarcasm detection. In the third ensemble model (MLD), MLP, logistic regression, and decision tree are combined, and the last one (SLM) is the combination of MLP, logistic regression, and SVM. The proposed model is implemented in Python and tested on five datasets of different sizes. The performance of the models is tested with regard to various metrics.</p>","PeriodicalId":50733,"journal":{"name":"Behavioural Neurology","volume":"2021 ","pages":"9731519"},"PeriodicalIF":2.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8629652/pdf/","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2021/9731519","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 9
Abstract
Cognitive science is a technology which focuses on analyzing the human brain using the application of DM. The databases are utilized to gather and store the large volume of data. The authenticated information is extracted using measures. This research work is based on detecting the sarcasm from the text data. This research work introduces a scheme to detect sarcasm based on PCA algorithm, K-means algorithm, and ensemble classification. The four ensemble classifiers are designed with the objective of detecting the sarcasm. The first ensemble classification algorithm (SKD) is the combination of SVM, KNN, and decision tree. In the second ensemble classifier (SLD), SVM, logistic regression, and decision tree classifiers are combined for the sarcasm detection. In the third ensemble model (MLD), MLP, logistic regression, and decision tree are combined, and the last one (SLM) is the combination of MLP, logistic regression, and SVM. The proposed model is implemented in Python and tested on five datasets of different sizes. The performance of the models is tested with regard to various metrics.
期刊介绍:
Behavioural Neurology is a peer-reviewed, Open Access journal which publishes original research articles, review articles and clinical studies based on various diseases and syndromes in behavioural neurology. The aim of the journal is to provide a platform for researchers and clinicians working in various fields of neurology including cognitive neuroscience, neuropsychology and neuropsychiatry.
Topics of interest include:
ADHD
Aphasia
Autism
Alzheimer’s Disease
Behavioural Disorders
Dementia
Epilepsy
Multiple Sclerosis
Parkinson’s Disease
Psychosis
Stroke
Traumatic brain injury.