{"title":"Combining chains of Bayesian models with Markov melding.","authors":"Andrew A Manderson, Robert J B Goudie","doi":"10.1214/22-BA1327","DOIUrl":null,"url":null,"abstract":"<p><p>A challenge for practitioners of Bayesian inference is specifying a model that incorporates multiple relevant, heterogeneous data sets. It may be easier to instead specify distinct submodels for each source of data, then join the submodels together. We consider chains of submodels, where submodels directly relate to their neighbours via common quantities which may be parameters or deterministic functions thereof. We propose <i>chained Markov melding</i>, an extension of Markov melding, a generic method to combine chains of submodels into a joint model. One challenge we address is appropriately capturing the prior dependence between common quantities within a submodel, whilst also reconciling differences in priors for the same common quantity between two adjacent submodels. Estimating the posterior of the resulting overall joint model is also challenging, so we describe a sampler that uses the chain structure to incorporate information contained in the submodels in multiple stages, possibly in parallel. We demonstrate our methodology using two examples. The first example considers an ecological integrated population model, where multiple data sets are required to accurately estimate population immigration and reproduction rates. We also consider a joint longitudinal and time-to-event model with uncertain, submodel-derived event times. Chained Markov melding is a conceptually appealing approach to integrating submodels in these settings.</p>","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614958/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-BA1327","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
A challenge for practitioners of Bayesian inference is specifying a model that incorporates multiple relevant, heterogeneous data sets. It may be easier to instead specify distinct submodels for each source of data, then join the submodels together. We consider chains of submodels, where submodels directly relate to their neighbours via common quantities which may be parameters or deterministic functions thereof. We propose chained Markov melding, an extension of Markov melding, a generic method to combine chains of submodels into a joint model. One challenge we address is appropriately capturing the prior dependence between common quantities within a submodel, whilst also reconciling differences in priors for the same common quantity between two adjacent submodels. Estimating the posterior of the resulting overall joint model is also challenging, so we describe a sampler that uses the chain structure to incorporate information contained in the submodels in multiple stages, possibly in parallel. We demonstrate our methodology using two examples. The first example considers an ecological integrated population model, where multiple data sets are required to accurately estimate population immigration and reproduction rates. We also consider a joint longitudinal and time-to-event model with uncertain, submodel-derived event times. Chained Markov melding is a conceptually appealing approach to integrating submodels in these settings.
期刊介绍:
Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining.
Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.