Tian Qin , Xiangdong Ruan , Zhaojun Duan , Jianping Cao , Junrong Liang , Jing Yang , Yan Jiang , Mang Shi , Jianguo Xu
{"title":"Wildlife-borne microorganisms and strategies to prevent and control emerging infectious diseases","authors":"Tian Qin , Xiangdong Ruan , Zhaojun Duan , Jianping Cao , Junrong Liang , Jing Yang , Yan Jiang , Mang Shi , Jianguo Xu","doi":"10.1016/j.jobb.2021.06.005","DOIUrl":null,"url":null,"abstract":"<div><p>China is one of the countries with the richest wildlife population. The large variety of widely distributed species act as natural or susceptible hosts for numerous infectious diseases. It is estimated that there are more than 1.2 million unknown virus species in China, and there might be 10,000–30,000 unknown bacteria in wild mammals on the Qinghai-Tibet Plateau alone. There are no less than 600,000 species of animal-borne parasites and approximately 2 million species of fungi worldwide. With rapid economic growth and globalization, humans and wildlife interact more frequently, which enhances the probability of wildlife-borne pathogens infecting humans. The occurrence of animal-borne infectious diseases will become the “new normal” we have to face in the future. Therefore, research should be carried out on wildlife-borne microorganisms and the prevention and control of emerging infectious diseases to establish an analytical framework and an evaluation technology system for risk assessment and early warning of potential animal-borne emerging infectious diseases. This will not only improve our understanding of wildlife-borne microbial communities but also enable in-depth analysis, discovery, early warning, and even prediction of major animal-borne emerging infectious diseases that might occur in the future. Furthermore, this research will reduce response times, minimize the social and economic impact and losses, enable interventions related to the emergence or spread of the disease as early as possible, and comprehensively improve our management of infectious disease outbreaks.</p></div>","PeriodicalId":52875,"journal":{"name":"Journal of Biosafety and Biosecurity","volume":"3 2","pages":"Pages 67-71"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jobb.2021.06.005","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biosafety and Biosecurity","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S258893382100025X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 3
Abstract
China is one of the countries with the richest wildlife population. The large variety of widely distributed species act as natural or susceptible hosts for numerous infectious diseases. It is estimated that there are more than 1.2 million unknown virus species in China, and there might be 10,000–30,000 unknown bacteria in wild mammals on the Qinghai-Tibet Plateau alone. There are no less than 600,000 species of animal-borne parasites and approximately 2 million species of fungi worldwide. With rapid economic growth and globalization, humans and wildlife interact more frequently, which enhances the probability of wildlife-borne pathogens infecting humans. The occurrence of animal-borne infectious diseases will become the “new normal” we have to face in the future. Therefore, research should be carried out on wildlife-borne microorganisms and the prevention and control of emerging infectious diseases to establish an analytical framework and an evaluation technology system for risk assessment and early warning of potential animal-borne emerging infectious diseases. This will not only improve our understanding of wildlife-borne microbial communities but also enable in-depth analysis, discovery, early warning, and even prediction of major animal-borne emerging infectious diseases that might occur in the future. Furthermore, this research will reduce response times, minimize the social and economic impact and losses, enable interventions related to the emergence or spread of the disease as early as possible, and comprehensively improve our management of infectious disease outbreaks.