Human retinal secretome: A cross-link between mesenchymal and retinal cells.

IF 3.6 3区 医学 Q3 CELL & TISSUE ENGINEERING
Luigi Donato, Concetta Scimone, Simona Alibrandi, Sergio Zaccaria Scalinci, Domenico Mordà, Carmela Rinaldi, Rosalia D'Angelo, Antonina Sidoti
{"title":"Human retinal secretome: A cross-link between mesenchymal and retinal cells.","authors":"Luigi Donato,&nbsp;Concetta Scimone,&nbsp;Simona Alibrandi,&nbsp;Sergio Zaccaria Scalinci,&nbsp;Domenico Mordà,&nbsp;Carmela Rinaldi,&nbsp;Rosalia D'Angelo,&nbsp;Antonina Sidoti","doi":"10.4252/wjsc.v15.i7.665","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, mesenchymal stem cells (MSC) have been considered the most effective source for regenerative medicine, especially due to released soluble paracrine bioactive components and extracellular vesicles. These factors, collectively called the secretome, play crucial roles in immunomodulation and in improving survival and regeneration capabilities of injured tissue. Recently, there has been a growing interest in the secretome released by retinal cytotypes, especially retinal pigment epithelium and Müller glia cells. The latter trophic factors represent the key to preserving morphofunctional integrity of the retina, regulating biological pathways involved in survival, function and responding to injury. Furthermore, these factors can play a pivotal role in onset and progression of retinal diseases after damage of cell secretory function. In this review, we delineated the importance of cross-talk between MSCs and retinal cells, focusing on common/induced secreted factors, during experimental therapy for retinal diseases. The cross-link between the MSC and retinal cell secretomes suggests that the MSC secretome can modulate the retinal cell secretome and vice versa. For example, the MSC secretome can protect retinal cells from degeneration by reducing oxidative stress, autophagy and programmed cell death. Conversely, the retinal cell secretome can influence the MSC secretome by inducing changes in MSC gene expression and phenotype.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/10/54/WJSC-15-665.PMC10401416.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of stem cells","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4252/wjsc.v15.i7.665","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, mesenchymal stem cells (MSC) have been considered the most effective source for regenerative medicine, especially due to released soluble paracrine bioactive components and extracellular vesicles. These factors, collectively called the secretome, play crucial roles in immunomodulation and in improving survival and regeneration capabilities of injured tissue. Recently, there has been a growing interest in the secretome released by retinal cytotypes, especially retinal pigment epithelium and Müller glia cells. The latter trophic factors represent the key to preserving morphofunctional integrity of the retina, regulating biological pathways involved in survival, function and responding to injury. Furthermore, these factors can play a pivotal role in onset and progression of retinal diseases after damage of cell secretory function. In this review, we delineated the importance of cross-talk between MSCs and retinal cells, focusing on common/induced secreted factors, during experimental therapy for retinal diseases. The cross-link between the MSC and retinal cell secretomes suggests that the MSC secretome can modulate the retinal cell secretome and vice versa. For example, the MSC secretome can protect retinal cells from degeneration by reducing oxidative stress, autophagy and programmed cell death. Conversely, the retinal cell secretome can influence the MSC secretome by inducing changes in MSC gene expression and phenotype.

Abstract Image

人视网膜分泌组:间充质细胞和视网膜细胞之间的交联。
近年来,间充质干细胞(MSC)被认为是再生医学最有效的来源,特别是由于其释放的可溶性旁分泌生物活性成分和细胞外囊泡。这些因子统称为分泌组,在免疫调节和提高受伤组织的存活和再生能力方面发挥着至关重要的作用。近年来,人们对视网膜细胞类型,特别是视网膜色素上皮细胞和神经胶质细胞释放的分泌组越来越感兴趣。后一种营养因子是维持视网膜形态功能完整性、调节与存活、功能和损伤反应有关的生物通路的关键。此外,这些因素可能在细胞分泌功能受损后视网膜疾病的发生和发展中起关键作用。在这篇综述中,我们描述了MSCs和视网膜细胞之间的串扰的重要性,重点是共同/诱导分泌因子,在视网膜疾病的实验治疗中。间充质干细胞和视网膜细胞分泌组之间的交联表明间充质干细胞分泌组可以调节视网膜细胞分泌组,反之亦然。例如,间充质干细胞分泌组可以通过减少氧化应激、自噬和程序性细胞死亡来保护视网膜细胞免于变性。相反,视网膜细胞分泌组可以通过诱导MSC基因表达和表型的改变来影响MSC分泌组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
World journal of stem cells
World journal of stem cells Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
7.80
自引率
4.90%
发文量
750
期刊介绍: The World Journal of Stem Cells (WJSC) is a leading academic journal devoted to reporting the latest, cutting-edge research progress and findings of basic research and clinical practice in the field of stem cells. It was launched on December 31, 2009 and is published monthly (12 issues annually) by BPG, the world''s leading professional clinical medical journal publishing company.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信