Exploring microfluidics and membrane extrusion for the formulation of temozolomide-loaded liposomes: investigating the effect of formulation and process variables.

IF 3.6 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Tejashree Waghule, Ranendra Narayan Saha, Gautam Singhvi
{"title":"Exploring microfluidics and membrane extrusion for the formulation of temozolomide-loaded liposomes: investigating the effect of formulation and process variables.","authors":"Tejashree Waghule,&nbsp;Ranendra Narayan Saha,&nbsp;Gautam Singhvi","doi":"10.1080/08982104.2022.2139844","DOIUrl":null,"url":null,"abstract":"<p><p>Liposomes have gained much attention in drug delivery since the entry of liposomal Doxorubicin (Doxil<sup>®</sup>) into the market. Liposomes can entrap lipophilic, hydrophilic as well as amphiphilic drug molecules due to their distinctive structural features. Yet the clinical translation of liposomes is limited due to the reproducibility issues owing to a lack of information related to the impact of process parameters and formulation variables on designed liposomes. Recently, preparation techniques like membrane extrusion and microfluidics have been reported to produce liposomes in a reproducible manner. The present research study selected an amphiphilic drug Temozolomide (TMZ). It has a short half-life in the plasma due to its pH-dependent stability. Various critical and non-critical parameters affecting the critical quality attributes were identified and studied using risk-based assessment. The effect of various material attributes and process parameters on the critical quality attributes of the temozolomide-loaded liposomes prepared by microfluidics and membrane extrusion techniques were investigated in detail. Liposomes in the size range of 100-150 nm were targeted. Both techniques were optimized with a minimum number of critical process parameters. The obtained information will be beneficial to formulation scientists for designing liposomes for an amphiphilic drug on a large scale.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Liposome Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08982104.2022.2139844","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Liposomes have gained much attention in drug delivery since the entry of liposomal Doxorubicin (Doxil®) into the market. Liposomes can entrap lipophilic, hydrophilic as well as amphiphilic drug molecules due to their distinctive structural features. Yet the clinical translation of liposomes is limited due to the reproducibility issues owing to a lack of information related to the impact of process parameters and formulation variables on designed liposomes. Recently, preparation techniques like membrane extrusion and microfluidics have been reported to produce liposomes in a reproducible manner. The present research study selected an amphiphilic drug Temozolomide (TMZ). It has a short half-life in the plasma due to its pH-dependent stability. Various critical and non-critical parameters affecting the critical quality attributes were identified and studied using risk-based assessment. The effect of various material attributes and process parameters on the critical quality attributes of the temozolomide-loaded liposomes prepared by microfluidics and membrane extrusion techniques were investigated in detail. Liposomes in the size range of 100-150 nm were targeted. Both techniques were optimized with a minimum number of critical process parameters. The obtained information will be beneficial to formulation scientists for designing liposomes for an amphiphilic drug on a large scale.

替莫唑胺脂质体的微流体和膜挤压制备研究:配方和工艺变量的影响。
自从多柔比星(Doxil®)进入市场以来,脂质体在给药方面受到了广泛的关注。由于脂质体独特的结构特征,它们可以捕获亲脂性、亲水性和两亲性药物分子。然而,由于缺乏与工艺参数和配方变量对设计的脂质体的影响相关的信息,因此由于可重复性问题,脂质体的临床翻译受到限制。最近,膜挤出和微流体等制备技术已被报道以可重复的方式生产脂质体。本研究选择了两亲性药物替莫唑胺(TMZ)。由于其ph依赖性的稳定性,它在血浆中的半衰期很短。利用基于风险的评估方法识别和研究了影响关键质量属性的各种关键和非关键参数。研究了微流控和膜挤压法制备替莫唑胺脂质体的材料特性和工艺参数对其关键质量特性的影响。目标脂质体的粒径范围为100 ~ 150 nm。两种技术都以最小数量的关键工艺参数进行了优化。所获得的信息将有助于配方科学家大规模设计两亲性药物的脂质体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Liposome Research
Journal of Liposome Research 生物-生化与分子生物学
CiteScore
10.50
自引率
2.30%
发文量
24
审稿时长
3 months
期刊介绍: The Journal of Liposome Research aims to publish original, high-quality, peer-reviewed research on the topic of liposomes and related systems, lipid-based delivery systems, lipid biology, and both synthetic and physical lipid chemistry. Reviews and commentaries or editorials are generally solicited and are editorially reviewed. The Journal also publishes abstracts and conference proceedings including those from the International Liposome Society. The scope of the Journal includes: Formulation and characterisation of systems Formulation engineering of systems Synthetic and physical lipid chemistry Lipid Biology Biomembranes Vaccines Emerging technologies and systems related to liposomes and vesicle type systems Developmental methodologies and new analytical techniques pertaining to the general area Pharmacokinetics, pharmacodynamics and biodistribution of systems Clinical applications. The Journal also publishes Special Issues focusing on particular topics and themes within the general scope of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信