Xue Dong, Simon Zhornitsky, Wuyi Wang, Thang M Le, Yu Chen, Shefali Chaudhary, Chiang-Shan R Li, Sheng Zhang
{"title":"最近禁欲的可卡因依赖者的静息状态——背侧和腹侧纹状体的功能连接、冲动性和使用严重程度。","authors":"Xue Dong, Simon Zhornitsky, Wuyi Wang, Thang M Le, Yu Chen, Shefali Chaudhary, Chiang-Shan R Li, Sheng Zhang","doi":"10.1093/ijnp/pyac019","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Previous studies have focused on both ventral striatum (VS) and dorsal striatum (DS) in characterizing dopaminergic deficits in addiction. Animal studies suggest VS and DS dysfunction each in association with impulsive and compulsive cocaine use during early and later stages of addiction. However, few human studies have aimed to distinguish the roles of VS and DS dysfunction in cocaine misuse.</p><p><strong>Methods: </strong>We examined VS and DS resting-state functional connectivity (rsFC) of 122 recently abstinent cocaine-dependent individuals (CDs) and 122 healthy controls (HCs) in 2 separate cohorts. We followed published routines in imaging data analyses and evaluated the results at a corrected threshold with age, sex, years of drinking, and smoking accounted for.</p><p><strong>Results: </strong>CDs relative to HCs showed higher VS rsFC with the left inferior frontal cortex (IFC), lower VS rsFC with the hippocampus, and higher DS rsFC with the left orbitofrontal cortex. Region-of-interest analyses confirmed the findings in the 2 cohorts examined separately. In CDs, VS-left IFC and VS-hippocampus connectivity was positively and negatively correlated with average monthly cocaine use in the prior year, respectively. In the second cohort where participants were assessed with the Barratt Impulsivity Scale (BIS-11), VS-left IFC and VS-hippocampus connectivity was also positively and negatively correlated with BIS-11 scores in CDs. In contrast, DS-orbitofrontal cortex connectivity did not relate significantly to cocaine use metrics or BIS-11 scores.</p><p><strong>Conclusion: </strong>These findings associate VS rsFC with impulsivity and the severity of recent cocaine use. How DS connectivity partakes in cocaine misuse remains to be investigated.</p>","PeriodicalId":14134,"journal":{"name":"International Journal of Neuropsychopharmacology","volume":" ","pages":"627-638"},"PeriodicalIF":4.5000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c7/1f/pyac019.PMC10519818.pdf","citationCount":"0","resultStr":"{\"title\":\"Resting-State Functional Connectivity of the Dorsal and Ventral Striatum, Impulsivity, and Severity of Use in Recently Abstinent Cocaine-Dependent Individuals.\",\"authors\":\"Xue Dong, Simon Zhornitsky, Wuyi Wang, Thang M Le, Yu Chen, Shefali Chaudhary, Chiang-Shan R Li, Sheng Zhang\",\"doi\":\"10.1093/ijnp/pyac019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Previous studies have focused on both ventral striatum (VS) and dorsal striatum (DS) in characterizing dopaminergic deficits in addiction. Animal studies suggest VS and DS dysfunction each in association with impulsive and compulsive cocaine use during early and later stages of addiction. However, few human studies have aimed to distinguish the roles of VS and DS dysfunction in cocaine misuse.</p><p><strong>Methods: </strong>We examined VS and DS resting-state functional connectivity (rsFC) of 122 recently abstinent cocaine-dependent individuals (CDs) and 122 healthy controls (HCs) in 2 separate cohorts. We followed published routines in imaging data analyses and evaluated the results at a corrected threshold with age, sex, years of drinking, and smoking accounted for.</p><p><strong>Results: </strong>CDs relative to HCs showed higher VS rsFC with the left inferior frontal cortex (IFC), lower VS rsFC with the hippocampus, and higher DS rsFC with the left orbitofrontal cortex. Region-of-interest analyses confirmed the findings in the 2 cohorts examined separately. In CDs, VS-left IFC and VS-hippocampus connectivity was positively and negatively correlated with average monthly cocaine use in the prior year, respectively. In the second cohort where participants were assessed with the Barratt Impulsivity Scale (BIS-11), VS-left IFC and VS-hippocampus connectivity was also positively and negatively correlated with BIS-11 scores in CDs. In contrast, DS-orbitofrontal cortex connectivity did not relate significantly to cocaine use metrics or BIS-11 scores.</p><p><strong>Conclusion: </strong>These findings associate VS rsFC with impulsivity and the severity of recent cocaine use. How DS connectivity partakes in cocaine misuse remains to be investigated.</p>\",\"PeriodicalId\":14134,\"journal\":{\"name\":\"International Journal of Neuropsychopharmacology\",\"volume\":\" \",\"pages\":\"627-638\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c7/1f/pyac019.PMC10519818.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Neuropsychopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/ijnp/pyac019\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neuropsychopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/ijnp/pyac019","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Resting-State Functional Connectivity of the Dorsal and Ventral Striatum, Impulsivity, and Severity of Use in Recently Abstinent Cocaine-Dependent Individuals.
Background: Previous studies have focused on both ventral striatum (VS) and dorsal striatum (DS) in characterizing dopaminergic deficits in addiction. Animal studies suggest VS and DS dysfunction each in association with impulsive and compulsive cocaine use during early and later stages of addiction. However, few human studies have aimed to distinguish the roles of VS and DS dysfunction in cocaine misuse.
Methods: We examined VS and DS resting-state functional connectivity (rsFC) of 122 recently abstinent cocaine-dependent individuals (CDs) and 122 healthy controls (HCs) in 2 separate cohorts. We followed published routines in imaging data analyses and evaluated the results at a corrected threshold with age, sex, years of drinking, and smoking accounted for.
Results: CDs relative to HCs showed higher VS rsFC with the left inferior frontal cortex (IFC), lower VS rsFC with the hippocampus, and higher DS rsFC with the left orbitofrontal cortex. Region-of-interest analyses confirmed the findings in the 2 cohorts examined separately. In CDs, VS-left IFC and VS-hippocampus connectivity was positively and negatively correlated with average monthly cocaine use in the prior year, respectively. In the second cohort where participants were assessed with the Barratt Impulsivity Scale (BIS-11), VS-left IFC and VS-hippocampus connectivity was also positively and negatively correlated with BIS-11 scores in CDs. In contrast, DS-orbitofrontal cortex connectivity did not relate significantly to cocaine use metrics or BIS-11 scores.
Conclusion: These findings associate VS rsFC with impulsivity and the severity of recent cocaine use. How DS connectivity partakes in cocaine misuse remains to be investigated.
期刊介绍:
The central focus of the journal is on research that advances understanding of existing and new neuropsychopharmacological agents including their mode of action and clinical application or provides insights into the biological basis of psychiatric disorders and thereby advances their pharmacological treatment. Such research may derive from the full spectrum of biological and psychological fields of inquiry encompassing classical and novel techniques in neuropsychopharmacology as well as strategies such as neuroimaging, genetics, psychoneuroendocrinology and neuropsychology.