Sangeetha Vadakke-Madathil, Esmaa Bouhamida, Bingyan J Wang, Prabhu Mathiyalagan, Parichitran Ayyamperumal, Amir Khan, Micayla Oniskey, Carlos Santos-Gallegos, Michael Hadley, Lori Croft, Fumiko Dekio, Rachel Brody, Shari Gelber, Rhoda Sperling, Hina W Chaudhry
{"title":"从人胎盘中发现一种多能细胞。","authors":"Sangeetha Vadakke-Madathil, Esmaa Bouhamida, Bingyan J Wang, Prabhu Mathiyalagan, Parichitran Ayyamperumal, Amir Khan, Micayla Oniskey, Carlos Santos-Gallegos, Michael Hadley, Lori Croft, Fumiko Dekio, Rachel Brody, Shari Gelber, Rhoda Sperling, Hina W Chaudhry","doi":"10.1101/2023.08.02.551028","DOIUrl":null,"url":null,"abstract":"<p><p>We report a population of multipotent cells isolated from term human placentas that exhibit clonal expansion and migratory capacity, along with a gene expression profile that indicates immune privilege. Previously known largely for its role in early placentation, the developmental regulator CDX2 marks cells capable of differentiating into cardiomyocytes and vascular lineages. Building on our prior findings that murine Cdx2 cells improved cardiac function in mice after myocardial infarction (MI), we isolated CDX2⁺ cells from placentas of 180 healthy pregnancies. These human CDX2 cells spontaneously generate cardiac and vascular lineages <i>in vitro, in vivo,</i> and express transcriptomic signatures associated with cardiogenesis, vasculogenesis, immune modulation, and chemotaxis. When administered to NOD/SCID mice after MI, the cells restore cardiac function. Additionally, CDX2 cells can be clonally propagated while retaining cardiovascular differentiation potential. Our findings support the therapeutic potential of placental CDX2 cells as an ethically accessible and regenerative strategy for cardiovascular disease.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418244/pdf/","citationCount":"0","resultStr":"{\"title\":\"Developmentally Conserved CDX2 Cells from Human Term Placenta Drive Cardiovascular Regeneration.\",\"authors\":\"Sangeetha Vadakke-Madathil, Esmaa Bouhamida, Bingyan J Wang, Prabhu Mathiyalagan, Parichitran Ayyamperumal, Amir Khan, Micayla Oniskey, Carlos Santos-Gallegos, Michael Hadley, Lori Croft, Fumiko Dekio, Rachel Brody, Shari Gelber, Rhoda Sperling, Hina W Chaudhry\",\"doi\":\"10.1101/2023.08.02.551028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We report a population of multipotent cells isolated from term human placentas that exhibit clonal expansion and migratory capacity, along with a gene expression profile that indicates immune privilege. Previously known largely for its role in early placentation, the developmental regulator CDX2 marks cells capable of differentiating into cardiomyocytes and vascular lineages. Building on our prior findings that murine Cdx2 cells improved cardiac function in mice after myocardial infarction (MI), we isolated CDX2⁺ cells from placentas of 180 healthy pregnancies. These human CDX2 cells spontaneously generate cardiac and vascular lineages <i>in vitro, in vivo,</i> and express transcriptomic signatures associated with cardiogenesis, vasculogenesis, immune modulation, and chemotaxis. When administered to NOD/SCID mice after MI, the cells restore cardiac function. Additionally, CDX2 cells can be clonally propagated while retaining cardiovascular differentiation potential. Our findings support the therapeutic potential of placental CDX2 cells as an ethically accessible and regenerative strategy for cardiovascular disease.</p>\",\"PeriodicalId\":72407,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418244/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.08.02.551028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.08.02.551028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Developmentally Conserved CDX2 Cells from Human Term Placenta Drive Cardiovascular Regeneration.
We report a population of multipotent cells isolated from term human placentas that exhibit clonal expansion and migratory capacity, along with a gene expression profile that indicates immune privilege. Previously known largely for its role in early placentation, the developmental regulator CDX2 marks cells capable of differentiating into cardiomyocytes and vascular lineages. Building on our prior findings that murine Cdx2 cells improved cardiac function in mice after myocardial infarction (MI), we isolated CDX2⁺ cells from placentas of 180 healthy pregnancies. These human CDX2 cells spontaneously generate cardiac and vascular lineages in vitro, in vivo, and express transcriptomic signatures associated with cardiogenesis, vasculogenesis, immune modulation, and chemotaxis. When administered to NOD/SCID mice after MI, the cells restore cardiac function. Additionally, CDX2 cells can be clonally propagated while retaining cardiovascular differentiation potential. Our findings support the therapeutic potential of placental CDX2 cells as an ethically accessible and regenerative strategy for cardiovascular disease.