Sara de la Salle, Joëlle Choueiry, Mark Payumo, Matt Devlin, Chelsea Noel, Ali Abozmal, Molly Hyde, Renée Baysarowich, Brittany Duncan, Verner Knott
{"title":"经颅交流电刺激改变听觉稳态振荡节律及其跨频耦合。","authors":"Sara de la Salle, Joëlle Choueiry, Mark Payumo, Matt Devlin, Chelsea Noel, Ali Abozmal, Molly Hyde, Renée Baysarowich, Brittany Duncan, Verner Knott","doi":"10.1177/15500594231179679","DOIUrl":null,"url":null,"abstract":"<p><p>Auditory cortical plasticity deficits in schizophrenia are evidenced with electroencephalographic (EEG)-derived biomarkers, including the 40-Hz auditory steady-state response (ASSR). Aiming to understand the underlying oscillatory mechanisms contributing to the 40-Hz ASSR, we examined its response to transcranial alternating current stimulation (tACS) applied bilaterally to the temporal lobe of 23 healthy participants. Although not responding to gamma tACS, the 40-Hz ASSR was modulated by theta tACS (vs sham tACS), with reductions in gamma power and phase locking being accompanied by increases in theta-gamma phase-amplitude cross-frequency coupling. Results reveal that oscillatory changes induced by frequency-tuned tACS may be one approach for targeting and modulating auditory plasticity in normal and diseased brains.</p>","PeriodicalId":10682,"journal":{"name":"Clinical EEG and Neuroscience","volume":" ","pages":"329-339"},"PeriodicalIF":1.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11020127/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transcranial Alternating Current Stimulation Alters Auditory Steady-State Oscillatory Rhythms and Their Cross-Frequency Couplings.\",\"authors\":\"Sara de la Salle, Joëlle Choueiry, Mark Payumo, Matt Devlin, Chelsea Noel, Ali Abozmal, Molly Hyde, Renée Baysarowich, Brittany Duncan, Verner Knott\",\"doi\":\"10.1177/15500594231179679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Auditory cortical plasticity deficits in schizophrenia are evidenced with electroencephalographic (EEG)-derived biomarkers, including the 40-Hz auditory steady-state response (ASSR). Aiming to understand the underlying oscillatory mechanisms contributing to the 40-Hz ASSR, we examined its response to transcranial alternating current stimulation (tACS) applied bilaterally to the temporal lobe of 23 healthy participants. Although not responding to gamma tACS, the 40-Hz ASSR was modulated by theta tACS (vs sham tACS), with reductions in gamma power and phase locking being accompanied by increases in theta-gamma phase-amplitude cross-frequency coupling. Results reveal that oscillatory changes induced by frequency-tuned tACS may be one approach for targeting and modulating auditory plasticity in normal and diseased brains.</p>\",\"PeriodicalId\":10682,\"journal\":{\"name\":\"Clinical EEG and Neuroscience\",\"volume\":\" \",\"pages\":\"329-339\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11020127/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical EEG and Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/15500594231179679\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical EEG and Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15500594231179679","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Transcranial Alternating Current Stimulation Alters Auditory Steady-State Oscillatory Rhythms and Their Cross-Frequency Couplings.
Auditory cortical plasticity deficits in schizophrenia are evidenced with electroencephalographic (EEG)-derived biomarkers, including the 40-Hz auditory steady-state response (ASSR). Aiming to understand the underlying oscillatory mechanisms contributing to the 40-Hz ASSR, we examined its response to transcranial alternating current stimulation (tACS) applied bilaterally to the temporal lobe of 23 healthy participants. Although not responding to gamma tACS, the 40-Hz ASSR was modulated by theta tACS (vs sham tACS), with reductions in gamma power and phase locking being accompanied by increases in theta-gamma phase-amplitude cross-frequency coupling. Results reveal that oscillatory changes induced by frequency-tuned tACS may be one approach for targeting and modulating auditory plasticity in normal and diseased brains.
期刊介绍:
Clinical EEG and Neuroscience conveys clinically relevant research and development in electroencephalography and neuroscience. Original articles on any aspect of clinical neurophysiology or related work in allied fields are invited for publication.