Priyanka Chakraborty, Suman Saha, Gustavo Deco, Arpan Banerjee, Dipanjan Roy
{"title":"结构和动态相似性预测代偿脑区驱动损伤后功能恢复机制。","authors":"Priyanka Chakraborty, Suman Saha, Gustavo Deco, Arpan Banerjee, Dipanjan Roy","doi":"10.1093/texcom/tgad012","DOIUrl":null,"url":null,"abstract":"<p><p>The focal lesion alters the excitation-inhibition (E-I) balance and healthy functional connectivity patterns, which may recover over time. One possible mechanism for the brain to counter the insult is global reshaping functional connectivity alterations. However, the operational principles by which this can be achieved remain unknown. We propose a novel equivalence principle based on structural and dynamic similarity analysis to predict whether specific compensatory areas initiate lost E-I regulation after lesion. We hypothesize that similar structural areas (SSAs) and dynamically similar areas (DSAs) corresponding to a lesioned site are the crucial dynamical units to restore lost homeostatic balance within the surviving cortical brain regions. SSAs and DSAs are independent measures, one based on structural similarity properties measured by Jaccard Index and the other based on post-lesion recovery time. We unravel the relationship between SSA and DSA by simulating a whole brain mean field model deployed on top of a virtually lesioned structural connectome from human neuroimaging data to characterize global brain dynamics and functional connectivity at the level of individual subjects. Our results suggest that wiring proximity and similarity are the 2 major guiding principles of compensation-related utilization of hemisphere in the post-lesion functional connectivity re-organization process.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":"4 3","pages":"tgad012"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10409568/pdf/","citationCount":"1","resultStr":"{\"title\":\"Structural-and-dynamical similarity predicts compensatory brain areas driving the post-lesion functional recovery mechanism.\",\"authors\":\"Priyanka Chakraborty, Suman Saha, Gustavo Deco, Arpan Banerjee, Dipanjan Roy\",\"doi\":\"10.1093/texcom/tgad012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The focal lesion alters the excitation-inhibition (E-I) balance and healthy functional connectivity patterns, which may recover over time. One possible mechanism for the brain to counter the insult is global reshaping functional connectivity alterations. However, the operational principles by which this can be achieved remain unknown. We propose a novel equivalence principle based on structural and dynamic similarity analysis to predict whether specific compensatory areas initiate lost E-I regulation after lesion. We hypothesize that similar structural areas (SSAs) and dynamically similar areas (DSAs) corresponding to a lesioned site are the crucial dynamical units to restore lost homeostatic balance within the surviving cortical brain regions. SSAs and DSAs are independent measures, one based on structural similarity properties measured by Jaccard Index and the other based on post-lesion recovery time. We unravel the relationship between SSA and DSA by simulating a whole brain mean field model deployed on top of a virtually lesioned structural connectome from human neuroimaging data to characterize global brain dynamics and functional connectivity at the level of individual subjects. Our results suggest that wiring proximity and similarity are the 2 major guiding principles of compensation-related utilization of hemisphere in the post-lesion functional connectivity re-organization process.</p>\",\"PeriodicalId\":72551,\"journal\":{\"name\":\"Cerebral cortex communications\",\"volume\":\"4 3\",\"pages\":\"tgad012\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10409568/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cerebral cortex communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/texcom/tgad012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/texcom/tgad012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Structural-and-dynamical similarity predicts compensatory brain areas driving the post-lesion functional recovery mechanism.
The focal lesion alters the excitation-inhibition (E-I) balance and healthy functional connectivity patterns, which may recover over time. One possible mechanism for the brain to counter the insult is global reshaping functional connectivity alterations. However, the operational principles by which this can be achieved remain unknown. We propose a novel equivalence principle based on structural and dynamic similarity analysis to predict whether specific compensatory areas initiate lost E-I regulation after lesion. We hypothesize that similar structural areas (SSAs) and dynamically similar areas (DSAs) corresponding to a lesioned site are the crucial dynamical units to restore lost homeostatic balance within the surviving cortical brain regions. SSAs and DSAs are independent measures, one based on structural similarity properties measured by Jaccard Index and the other based on post-lesion recovery time. We unravel the relationship between SSA and DSA by simulating a whole brain mean field model deployed on top of a virtually lesioned structural connectome from human neuroimaging data to characterize global brain dynamics and functional connectivity at the level of individual subjects. Our results suggest that wiring proximity and similarity are the 2 major guiding principles of compensation-related utilization of hemisphere in the post-lesion functional connectivity re-organization process.