计算机辅助马尔可夫随机场分割算法评估胎儿心室。

Q3 Engineering
Natarajan Sriraam, T V Sushma, S Suresh
{"title":"计算机辅助马尔可夫随机场分割算法评估胎儿心室。","authors":"Natarajan Sriraam,&nbsp;T V Sushma,&nbsp;S Suresh","doi":"10.1615/CritRevBiomedEng.2023046829","DOIUrl":null,"url":null,"abstract":"<p><p>Congenital heart disease (CHD) is the most widely occurring congenital defect and accounts to about 28% of the overall congenital defects. Analysis of the development of the fetal heart thus plays an important role for detection of abnormality in early stages and to take corrective measures. Cardiac chamber analysis is one of the important diagnosing methods. Segmentation of the cardiac chambers must be done appropriately to avoid false interpretations. Effective segmentation of fetal ventricular chambers is a challenging task as the speckle noise inherent in ultrasound images cause blurring of the boundaries of anatomical structures. Several segmentation techniques have been proposed for extracting the fetal cardiac chambers. This article discusses the performance evaluation of automated, probability based segmentation approach, and Markov random field (MRF) for segmenting the fetal ventricular chambers of ultrasonic cineloop sequences. 837 ultrasonic biometery sequences of various gestations were collected from local diagnostic center after due ethical clearance and used for the study. In order to assess the efficiency of the segmentation technique, four metrics such as dice coefficient, true positive ratio (TPR), false positive ratio (FPR), similarity ratio (SIR), and precision (PR) were used. In order to perform ground truth validation, 56% of the data used in this study were annotated by clinical experts. The automated segmentation yielded comparable results with manual annotation. The technique results in average value of 0.68 for Dice coefficient, 0.723 for TPR, 0.604 for SIR, and 0.632 for PR.</p>","PeriodicalId":53679,"journal":{"name":"Critical Reviews in Biomedical Engineering","volume":"51 1","pages":"15-27"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Computer-Aided Markov Random Field Segmentation Algorithm for Assessing Fetal Ventricular Chambers.\",\"authors\":\"Natarajan Sriraam,&nbsp;T V Sushma,&nbsp;S Suresh\",\"doi\":\"10.1615/CritRevBiomedEng.2023046829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Congenital heart disease (CHD) is the most widely occurring congenital defect and accounts to about 28% of the overall congenital defects. Analysis of the development of the fetal heart thus plays an important role for detection of abnormality in early stages and to take corrective measures. Cardiac chamber analysis is one of the important diagnosing methods. Segmentation of the cardiac chambers must be done appropriately to avoid false interpretations. Effective segmentation of fetal ventricular chambers is a challenging task as the speckle noise inherent in ultrasound images cause blurring of the boundaries of anatomical structures. Several segmentation techniques have been proposed for extracting the fetal cardiac chambers. This article discusses the performance evaluation of automated, probability based segmentation approach, and Markov random field (MRF) for segmenting the fetal ventricular chambers of ultrasonic cineloop sequences. 837 ultrasonic biometery sequences of various gestations were collected from local diagnostic center after due ethical clearance and used for the study. In order to assess the efficiency of the segmentation technique, four metrics such as dice coefficient, true positive ratio (TPR), false positive ratio (FPR), similarity ratio (SIR), and precision (PR) were used. In order to perform ground truth validation, 56% of the data used in this study were annotated by clinical experts. The automated segmentation yielded comparable results with manual annotation. The technique results in average value of 0.68 for Dice coefficient, 0.723 for TPR, 0.604 for SIR, and 0.632 for PR.</p>\",\"PeriodicalId\":53679,\"journal\":{\"name\":\"Critical Reviews in Biomedical Engineering\",\"volume\":\"51 1\",\"pages\":\"15-27\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/CritRevBiomedEng.2023046829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/CritRevBiomedEng.2023046829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

先天性心脏病(CHD)是最常见的先天性缺陷,约占所有先天性缺陷的28%。因此,分析胎儿心脏发育对早期发现异常并采取纠正措施具有重要意义。心室分析是诊断心绞痛的重要方法之一。必须适当分割心室,以避免错误的解释。胎儿心室的有效分割是一项具有挑战性的任务,因为超声图像中固有的斑点噪声会导致解剖结构的边界模糊。提出了几种提取胎儿心室的分割技术。本文讨论了基于概率的自动分割方法和马尔可夫随机场(MRF)在超声循环序列胎儿心室分割中的性能评价。经伦理审查,从当地诊断中心收集837例不同妊娠的超声生物测定序列用于本研究。为了评估分割技术的效率,使用了骰子系数、真阳性比(TPR)、假阳性比(FPR)、相似比(SIR)和精度(PR)四个指标。为了进行基础真实性验证,本研究中使用的56%的数据由临床专家注释。自动分割产生了与手动注释相当的结果。该技术的结果是骰子系数的平均值为0.68,TPR为0.723,SIR为0.604,PR为0.632。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Computer-Aided Markov Random Field Segmentation Algorithm for Assessing Fetal Ventricular Chambers.

Congenital heart disease (CHD) is the most widely occurring congenital defect and accounts to about 28% of the overall congenital defects. Analysis of the development of the fetal heart thus plays an important role for detection of abnormality in early stages and to take corrective measures. Cardiac chamber analysis is one of the important diagnosing methods. Segmentation of the cardiac chambers must be done appropriately to avoid false interpretations. Effective segmentation of fetal ventricular chambers is a challenging task as the speckle noise inherent in ultrasound images cause blurring of the boundaries of anatomical structures. Several segmentation techniques have been proposed for extracting the fetal cardiac chambers. This article discusses the performance evaluation of automated, probability based segmentation approach, and Markov random field (MRF) for segmenting the fetal ventricular chambers of ultrasonic cineloop sequences. 837 ultrasonic biometery sequences of various gestations were collected from local diagnostic center after due ethical clearance and used for the study. In order to assess the efficiency of the segmentation technique, four metrics such as dice coefficient, true positive ratio (TPR), false positive ratio (FPR), similarity ratio (SIR), and precision (PR) were used. In order to perform ground truth validation, 56% of the data used in this study were annotated by clinical experts. The automated segmentation yielded comparable results with manual annotation. The technique results in average value of 0.68 for Dice coefficient, 0.723 for TPR, 0.604 for SIR, and 0.632 for PR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Critical Reviews in Biomedical Engineering
Critical Reviews in Biomedical Engineering Engineering-Biomedical Engineering
CiteScore
1.80
自引率
0.00%
发文量
25
期刊介绍: Biomedical engineering has been characterized as the application of concepts drawn from engineering, computing, communications, mathematics, and the physical sciences to scientific and applied problems in the field of medicine and biology. Concepts and methodologies in biomedical engineering extend throughout the medical and biological sciences. This journal attempts to critically review a wide range of research and applied activities in the field. More often than not, topics chosen for inclusion are concerned with research and practice issues of current interest. Experts writing each review bring together current knowledge and historical information that has led to the current state-of-the-art.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信