{"title":"不同LET辐射对枯草芽孢杆菌孢子的致死和诱变作用","authors":"Katsuya Satoh , Wataru Hoshino , Yoshihiro Hase , Satoshi Kitamura , Hidenori Hayashi , Masakazu Furuta , Yutaka Oono","doi":"10.1016/j.mrfmmm.2023.111835","DOIUrl":null,"url":null,"abstract":"<div><p><span>New, useful microorganism<span> resources have been generated by ionizing radiation<span><span> breeding technology<span>. However, the mutagenic effects of ionizing radiation on microorganisms have not been systematically clarified. For a deeper understanding and characterization of ionizing radiation-induced mutations in microorganisms, we investigated the lethal effects of seven different </span></span>linear energy transfer (LET) radiations based on the survival fraction (SF) and whole-genome sequencing analysis of the mutagenic effects of a dose resulting in an SF of around 1% in </span></span></span><em>Bacillus subtilis</em> spores. Consequently, the lower LET radiations (gamma [surface LET: 0.2 keV/µm] and <sup>4</sup>He<sup>2+</sup><span><span> [24 keV/µm]) showed low lethality and high </span>mutation frequency (MF), resulting in the major induction of single-base substitutions. Whereas higher LET radiations (</span><sup>12</sup>C<sup>5+</sup> [156 keV/µm] and <sup>12</sup>C<sup>6+</sup> [179 keV/µm]) showed high lethality and low MF, resulting in the preferential induction of deletion mutations. In addition, <sup>12</sup>C<sup>6+</sup><span><span> (111) ion beams likely possess characteristics of both low- and high-LET radiations simultaneously. A decrease in the </span>relative biological effectiveness and an evaluation of the inactivation cross section indicated that </span><sup>20</sup>Ne<sup>8+</sup> (468 keV/µm) and <sup>40</sup>Ar<sup>13+</sup><span> (2214 keV/µm) ion beams had overkill effects. In conclusion, in the mutation breeding of microorganisms, it should be possible to regulate the proportions, types, and frequencies of induced mutations by selecting an ionizing radiation of an appropriate LET in accordance with the intended purpose.</span></p></div>","PeriodicalId":49790,"journal":{"name":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","volume":"827 ","pages":"Article 111835"},"PeriodicalIF":1.5000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lethal and mutagenic effects of different LET radiations on Bacillus subtilis spores\",\"authors\":\"Katsuya Satoh , Wataru Hoshino , Yoshihiro Hase , Satoshi Kitamura , Hidenori Hayashi , Masakazu Furuta , Yutaka Oono\",\"doi\":\"10.1016/j.mrfmmm.2023.111835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>New, useful microorganism<span> resources have been generated by ionizing radiation<span><span> breeding technology<span>. However, the mutagenic effects of ionizing radiation on microorganisms have not been systematically clarified. For a deeper understanding and characterization of ionizing radiation-induced mutations in microorganisms, we investigated the lethal effects of seven different </span></span>linear energy transfer (LET) radiations based on the survival fraction (SF) and whole-genome sequencing analysis of the mutagenic effects of a dose resulting in an SF of around 1% in </span></span></span><em>Bacillus subtilis</em> spores. Consequently, the lower LET radiations (gamma [surface LET: 0.2 keV/µm] and <sup>4</sup>He<sup>2+</sup><span><span> [24 keV/µm]) showed low lethality and high </span>mutation frequency (MF), resulting in the major induction of single-base substitutions. Whereas higher LET radiations (</span><sup>12</sup>C<sup>5+</sup> [156 keV/µm] and <sup>12</sup>C<sup>6+</sup> [179 keV/µm]) showed high lethality and low MF, resulting in the preferential induction of deletion mutations. In addition, <sup>12</sup>C<sup>6+</sup><span><span> (111) ion beams likely possess characteristics of both low- and high-LET radiations simultaneously. A decrease in the </span>relative biological effectiveness and an evaluation of the inactivation cross section indicated that </span><sup>20</sup>Ne<sup>8+</sup> (468 keV/µm) and <sup>40</sup>Ar<sup>13+</sup><span> (2214 keV/µm) ion beams had overkill effects. In conclusion, in the mutation breeding of microorganisms, it should be possible to regulate the proportions, types, and frequencies of induced mutations by selecting an ionizing radiation of an appropriate LET in accordance with the intended purpose.</span></p></div>\",\"PeriodicalId\":49790,\"journal\":{\"name\":\"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis\",\"volume\":\"827 \",\"pages\":\"Article 111835\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0027510723000222\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0027510723000222","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Lethal and mutagenic effects of different LET radiations on Bacillus subtilis spores
New, useful microorganism resources have been generated by ionizing radiation breeding technology. However, the mutagenic effects of ionizing radiation on microorganisms have not been systematically clarified. For a deeper understanding and characterization of ionizing radiation-induced mutations in microorganisms, we investigated the lethal effects of seven different linear energy transfer (LET) radiations based on the survival fraction (SF) and whole-genome sequencing analysis of the mutagenic effects of a dose resulting in an SF of around 1% in Bacillus subtilis spores. Consequently, the lower LET radiations (gamma [surface LET: 0.2 keV/µm] and 4He2+ [24 keV/µm]) showed low lethality and high mutation frequency (MF), resulting in the major induction of single-base substitutions. Whereas higher LET radiations (12C5+ [156 keV/µm] and 12C6+ [179 keV/µm]) showed high lethality and low MF, resulting in the preferential induction of deletion mutations. In addition, 12C6+ (111) ion beams likely possess characteristics of both low- and high-LET radiations simultaneously. A decrease in the relative biological effectiveness and an evaluation of the inactivation cross section indicated that 20Ne8+ (468 keV/µm) and 40Ar13+ (2214 keV/µm) ion beams had overkill effects. In conclusion, in the mutation breeding of microorganisms, it should be possible to regulate the proportions, types, and frequencies of induced mutations by selecting an ionizing radiation of an appropriate LET in accordance with the intended purpose.
期刊介绍:
Mutation Research (MR) provides a platform for publishing all aspects of DNA mutations and epimutations, from basic evolutionary aspects to translational applications in genetic and epigenetic diagnostics and therapy. Mutations are defined as all possible alterations in DNA sequence and sequence organization, from point mutations to genome structural variation, chromosomal aberrations and aneuploidy. Epimutations are defined as alterations in the epigenome, i.e., changes in DNA methylation, histone modification and small regulatory RNAs.
MR publishes articles in the following areas:
Of special interest are basic mechanisms through which DNA damage and mutations impact development and differentiation, stem cell biology and cell fate in general, including various forms of cell death and cellular senescence.
The study of genome instability in human molecular epidemiology and in relation to complex phenotypes, such as human disease, is considered a growing area of importance.
Mechanisms of (epi)mutation induction, for example, during DNA repair, replication or recombination; novel methods of (epi)mutation detection, with a focus on ultra-high-throughput sequencing.
Landscape of somatic mutations and epimutations in cancer and aging.
Role of de novo mutations in human disease and aging; mutations in population genomics.
Interactions between mutations and epimutations.
The role of epimutations in chromatin structure and function.
Mitochondrial DNA mutations and their consequences in terms of human disease and aging.
Novel ways to generate mutations and epimutations in cell lines and animal models.