{"title":"新生儿高氧肺损伤中内皮细胞向间质细胞的转变:性别作为生物学变量的作用。","authors":"Abiud Cantu, Manuel Cantu Gutierrez, Yuhao Zhang, Xiaoyu Dong, Krithika Lingappan","doi":"10.1152/physiolgenomics.00037.2023","DOIUrl":null,"url":null,"abstract":"<p><p>Bronchopulmonary dysplasia (BPD) is characterized by an arrest in alveolarization, abnormal vascular development, and variable interstitial fibroproliferation in the premature lung. Endothelial to mesenchymal transition (EndoMT) may be a source of pathological fibrosis in many organ systems. Whether EndoMT contributes to the pathogenesis of BPD is not known. We tested the hypothesis that pulmonary endothelial cells will show increased expression of EndoMT markers upon exposure to hyperoxia and that sex as a biological variable will modulate differences in expression. Wild-type (WT) and Cdh5-PAC CreERT2 (endothelial reporter) neonatal male and female mice (C57BL6) were exposed to hyperoxia (0.95 [Formula: see text]) either during the saccular stage of lung development (95% [Formula: see text]; <i>postnatal day 1-5</i> [<i>PND1-5</i>]) or through the saccular and early alveolar stages of lung development (75% [Formula: see text]; <i>PND1-14</i>). Expression of EndoMT markers was measured in whole lung and endothelial cell mRNA. Sorted lung endothelial cells (from room air- and hyperoxia-exposed lungs) were subjected to bulk RNA-Seq. We show that exposure of the neonatal lung to hyperoxia leads to upregulation of key markers of EndoMT. Furthermore, using lung sc-RNA-Seq data from neonatal lung we were able to show that all endothelial cell subpopulations including the lung capillary endothelial cells show upregulation of EndoMT-related genes. Markers related to EndoMT are upregulated in the neonatal lung upon exposure to hyperoxia and show sex-specific differences. Mechanisms mediating EndoMT in the injured neonatal lung can modulate the response of the neonatal lung to hyperoxic injury and need further investigation.<b>NEW & NOTEWORTHY</b> We show that neonatal hyperoxia exposure increased EndoMT markers in the lung endothelial cells and this biological process exhibits sex-specific differences.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625841/pdf/","citationCount":"0","resultStr":"{\"title\":\"Endothelial to mesenchymal transition in neonatal hyperoxic lung injury: role of sex as a biological variable.\",\"authors\":\"Abiud Cantu, Manuel Cantu Gutierrez, Yuhao Zhang, Xiaoyu Dong, Krithika Lingappan\",\"doi\":\"10.1152/physiolgenomics.00037.2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bronchopulmonary dysplasia (BPD) is characterized by an arrest in alveolarization, abnormal vascular development, and variable interstitial fibroproliferation in the premature lung. Endothelial to mesenchymal transition (EndoMT) may be a source of pathological fibrosis in many organ systems. Whether EndoMT contributes to the pathogenesis of BPD is not known. We tested the hypothesis that pulmonary endothelial cells will show increased expression of EndoMT markers upon exposure to hyperoxia and that sex as a biological variable will modulate differences in expression. Wild-type (WT) and Cdh5-PAC CreERT2 (endothelial reporter) neonatal male and female mice (C57BL6) were exposed to hyperoxia (0.95 [Formula: see text]) either during the saccular stage of lung development (95% [Formula: see text]; <i>postnatal day 1-5</i> [<i>PND1-5</i>]) or through the saccular and early alveolar stages of lung development (75% [Formula: see text]; <i>PND1-14</i>). Expression of EndoMT markers was measured in whole lung and endothelial cell mRNA. Sorted lung endothelial cells (from room air- and hyperoxia-exposed lungs) were subjected to bulk RNA-Seq. We show that exposure of the neonatal lung to hyperoxia leads to upregulation of key markers of EndoMT. Furthermore, using lung sc-RNA-Seq data from neonatal lung we were able to show that all endothelial cell subpopulations including the lung capillary endothelial cells show upregulation of EndoMT-related genes. Markers related to EndoMT are upregulated in the neonatal lung upon exposure to hyperoxia and show sex-specific differences. Mechanisms mediating EndoMT in the injured neonatal lung can modulate the response of the neonatal lung to hyperoxic injury and need further investigation.<b>NEW & NOTEWORTHY</b> We show that neonatal hyperoxia exposure increased EndoMT markers in the lung endothelial cells and this biological process exhibits sex-specific differences.</p>\",\"PeriodicalId\":20129,\"journal\":{\"name\":\"Physiological genomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625841/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/physiolgenomics.00037.2023\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/physiolgenomics.00037.2023","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Endothelial to mesenchymal transition in neonatal hyperoxic lung injury: role of sex as a biological variable.
Bronchopulmonary dysplasia (BPD) is characterized by an arrest in alveolarization, abnormal vascular development, and variable interstitial fibroproliferation in the premature lung. Endothelial to mesenchymal transition (EndoMT) may be a source of pathological fibrosis in many organ systems. Whether EndoMT contributes to the pathogenesis of BPD is not known. We tested the hypothesis that pulmonary endothelial cells will show increased expression of EndoMT markers upon exposure to hyperoxia and that sex as a biological variable will modulate differences in expression. Wild-type (WT) and Cdh5-PAC CreERT2 (endothelial reporter) neonatal male and female mice (C57BL6) were exposed to hyperoxia (0.95 [Formula: see text]) either during the saccular stage of lung development (95% [Formula: see text]; postnatal day 1-5 [PND1-5]) or through the saccular and early alveolar stages of lung development (75% [Formula: see text]; PND1-14). Expression of EndoMT markers was measured in whole lung and endothelial cell mRNA. Sorted lung endothelial cells (from room air- and hyperoxia-exposed lungs) were subjected to bulk RNA-Seq. We show that exposure of the neonatal lung to hyperoxia leads to upregulation of key markers of EndoMT. Furthermore, using lung sc-RNA-Seq data from neonatal lung we were able to show that all endothelial cell subpopulations including the lung capillary endothelial cells show upregulation of EndoMT-related genes. Markers related to EndoMT are upregulated in the neonatal lung upon exposure to hyperoxia and show sex-specific differences. Mechanisms mediating EndoMT in the injured neonatal lung can modulate the response of the neonatal lung to hyperoxic injury and need further investigation.NEW & NOTEWORTHY We show that neonatal hyperoxia exposure increased EndoMT markers in the lung endothelial cells and this biological process exhibits sex-specific differences.
期刊介绍:
The Physiological Genomics publishes original papers, reviews and rapid reports in a wide area of research focused on uncovering the links between genes and physiology at all levels of biological organization. Articles on topics ranging from single genes to the whole genome and their links to the physiology of humans, any model organism, organ, tissue or cell are welcome. Areas of interest include complex polygenic traits preferably of importance to human health and gene-function relationships of disease processes. Specifically, the Journal has dedicated Sections focused on genome-wide association studies (GWAS) to function, cardiovascular, renal, metabolic and neurological systems, exercise physiology, pharmacogenomics, clinical, translational and genomics for precision medicine, comparative and statistical genomics and databases. For further details on research themes covered within these Sections, please refer to the descriptions given under each Section.