{"title":"显微镜下的基因相互作用。","authors":"Colm J Ryan","doi":"10.1016/j.cels.2023.04.005","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional genetic interaction screens profile phenotypes at aggregate level, missing interactions that may influence the distribution of single cells in specific states. Here, Heigwer and colleagues use an imaging approach to generate a large-scale high-resolution genetic interaction map in Drosophila cells and demonstrate its utility for understanding gene function.</p>","PeriodicalId":54348,"journal":{"name":"Cell Systems","volume":"14 5","pages":"341-342"},"PeriodicalIF":9.0000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic interactions under the microscope.\",\"authors\":\"Colm J Ryan\",\"doi\":\"10.1016/j.cels.2023.04.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditional genetic interaction screens profile phenotypes at aggregate level, missing interactions that may influence the distribution of single cells in specific states. Here, Heigwer and colleagues use an imaging approach to generate a large-scale high-resolution genetic interaction map in Drosophila cells and demonstrate its utility for understanding gene function.</p>\",\"PeriodicalId\":54348,\"journal\":{\"name\":\"Cell Systems\",\"volume\":\"14 5\",\"pages\":\"341-342\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2023-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Systems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2023.04.005\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cels.2023.04.005","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Traditional genetic interaction screens profile phenotypes at aggregate level, missing interactions that may influence the distribution of single cells in specific states. Here, Heigwer and colleagues use an imaging approach to generate a large-scale high-resolution genetic interaction map in Drosophila cells and demonstrate its utility for understanding gene function.
Cell SystemsMedicine-Pathology and Forensic Medicine
CiteScore
16.50
自引率
1.10%
发文量
84
审稿时长
42 days
期刊介绍:
In 2015, Cell Systems was founded as a platform within Cell Press to showcase innovative research in systems biology. Our primary goal is to investigate complex biological phenomena that cannot be simply explained by basic mathematical principles. While the physical sciences have long successfully tackled such challenges, we have discovered that our most impactful publications often employ quantitative, inference-based methodologies borrowed from the fields of physics, engineering, mathematics, and computer science. We are committed to providing a home for elegant research that addresses fundamental questions in systems biology.