Wasserstein重心回归用于估计可再生能源和化石燃料能源指数的联合动力学。

IF 1.3 Q3 SOCIAL SCIENCES, MATHEMATICAL METHODS
Computational Management Science Pub Date : 2023-01-01 Epub Date: 2023-02-04 DOI:10.1007/s10287-023-00436-4
Maria Elena De Giuli, Alessandro Spelta
{"title":"Wasserstein重心回归用于估计可再生能源和化石燃料能源指数的联合动力学。","authors":"Maria Elena De Giuli,&nbsp;Alessandro Spelta","doi":"10.1007/s10287-023-00436-4","DOIUrl":null,"url":null,"abstract":"<p><p>In order to characterize non-linear system dynamics and to generate term structures of joint distributions, we propose a flexible and multidimensional approach, which exploits Wasserstein barycentric coordinates for histograms. We apply this methodology to study the relationships between the performance in the European market of the renewable energy sector and that of the fossil fuel energy one. Our methodology allows us to estimate the term structure of conditional joint distributions. This optimal barycentric interpolation can be interpreted as a posterior version of the joint distribution with respect to the prior contained in the past histograms history. Once the underlying dynamics mechanism among the set of variables are obtained as optimal Wasserstein barycentric coordinates, the learned dynamic rules can be used to generate term structures of joint distributions.</p>","PeriodicalId":46743,"journal":{"name":"Computational Management Science","volume":"20 1","pages":"1"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9898863/pdf/","citationCount":"1","resultStr":"{\"title\":\"Wasserstein barycenter regression for estimating the joint dynamics of renewable and fossil fuel energy indices.\",\"authors\":\"Maria Elena De Giuli,&nbsp;Alessandro Spelta\",\"doi\":\"10.1007/s10287-023-00436-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In order to characterize non-linear system dynamics and to generate term structures of joint distributions, we propose a flexible and multidimensional approach, which exploits Wasserstein barycentric coordinates for histograms. We apply this methodology to study the relationships between the performance in the European market of the renewable energy sector and that of the fossil fuel energy one. Our methodology allows us to estimate the term structure of conditional joint distributions. This optimal barycentric interpolation can be interpreted as a posterior version of the joint distribution with respect to the prior contained in the past histograms history. Once the underlying dynamics mechanism among the set of variables are obtained as optimal Wasserstein barycentric coordinates, the learned dynamic rules can be used to generate term structures of joint distributions.</p>\",\"PeriodicalId\":46743,\"journal\":{\"name\":\"Computational Management Science\",\"volume\":\"20 1\",\"pages\":\"1\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9898863/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Management Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10287-023-00436-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/2/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Management Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10287-023-00436-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 1

摘要

为了表征非线性系统动力学并生成联合分布的项结构,我们提出了一种灵活的多维方法,该方法利用Wasserstein重心坐标来绘制直方图。我们将这种方法应用于研究可再生能源行业在欧洲市场的表现与化石燃料能源行业的表现之间的关系。我们的方法使我们能够估计条件联合分布的期限结构。这种最优重心插值可以被解释为相对于过去直方图历史中包含的先验的关节分布的后验版本。一旦获得了变量集之间的潜在动力学机制作为最佳Wasserstein重心坐标,所学习的动力学规则就可以用于生成联合分布的项结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Wasserstein barycenter regression for estimating the joint dynamics of renewable and fossil fuel energy indices.

Wasserstein barycenter regression for estimating the joint dynamics of renewable and fossil fuel energy indices.

Wasserstein barycenter regression for estimating the joint dynamics of renewable and fossil fuel energy indices.

Wasserstein barycenter regression for estimating the joint dynamics of renewable and fossil fuel energy indices.

In order to characterize non-linear system dynamics and to generate term structures of joint distributions, we propose a flexible and multidimensional approach, which exploits Wasserstein barycentric coordinates for histograms. We apply this methodology to study the relationships between the performance in the European market of the renewable energy sector and that of the fossil fuel energy one. Our methodology allows us to estimate the term structure of conditional joint distributions. This optimal barycentric interpolation can be interpreted as a posterior version of the joint distribution with respect to the prior contained in the past histograms history. Once the underlying dynamics mechanism among the set of variables are obtained as optimal Wasserstein barycentric coordinates, the learned dynamic rules can be used to generate term structures of joint distributions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Management Science
Computational Management Science SOCIAL SCIENCES, MATHEMATICAL METHODS-
CiteScore
1.90
自引率
11.10%
发文量
13
期刊介绍: Computational Management Science (CMS) is an international journal focusing on all computational aspects of management science. These include theoretical and empirical analysis of computational models; computational statistics; analysis and applications of constrained, unconstrained, robust, stochastic and combinatorial optimisation algorithms; dynamic models, such as dynamic programming and decision trees; new search tools and algorithms for global optimisation, modelling, learning and forecasting; models and tools of knowledge acquisition. The emphasis on computational paradigms is an intended feature of CMS, distinguishing it from more classical operations research journals. Officially cited as: Comput Manag Sci
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信