{"title":"超大型和基于结构的虚拟筛选方法的最新进展。","authors":"Christoph Gorgulla","doi":"10.1146/annurev-biodatasci-020222-025013","DOIUrl":null,"url":null,"abstract":"<p><p>Drug development is a wide scientific field that faces many challenges these days. Among them are extremely high development costs, long development times, and a small number of new drugs that are approved each year. New and innovative technologies are needed to solve these problems that make the drug discovery process of small molecules more time and cost efficient, and that allow previously undruggable receptor classes to be targeted, such as protein-protein interactions. Structure-based virtual screenings (SBVSs) have become a leading contender in this context. In this review, we give an introduction to the foundations of SBVSs and survey their progress in the past few years with a focus on ultralarge virtual screenings (ULVSs). We outline key principles of SBVSs, recent success stories, new screening techniques, available deep learning-based docking methods, and promising future research directions. ULVSs have an enormous potential for the development of new small-molecule drugs and are already starting to transform early-stage drug discovery.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":"6 ","pages":"229-258"},"PeriodicalIF":7.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recent Developments in Ultralarge and Structure-Based Virtual Screening Approaches.\",\"authors\":\"Christoph Gorgulla\",\"doi\":\"10.1146/annurev-biodatasci-020222-025013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drug development is a wide scientific field that faces many challenges these days. Among them are extremely high development costs, long development times, and a small number of new drugs that are approved each year. New and innovative technologies are needed to solve these problems that make the drug discovery process of small molecules more time and cost efficient, and that allow previously undruggable receptor classes to be targeted, such as protein-protein interactions. Structure-based virtual screenings (SBVSs) have become a leading contender in this context. In this review, we give an introduction to the foundations of SBVSs and survey their progress in the past few years with a focus on ultralarge virtual screenings (ULVSs). We outline key principles of SBVSs, recent success stories, new screening techniques, available deep learning-based docking methods, and promising future research directions. ULVSs have an enormous potential for the development of new small-molecule drugs and are already starting to transform early-stage drug discovery.</p>\",\"PeriodicalId\":29775,\"journal\":{\"name\":\"Annual Review of Biomedical Data Science\",\"volume\":\"6 \",\"pages\":\"229-258\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Biomedical Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-biodatasci-020222-025013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-biodatasci-020222-025013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Recent Developments in Ultralarge and Structure-Based Virtual Screening Approaches.
Drug development is a wide scientific field that faces many challenges these days. Among them are extremely high development costs, long development times, and a small number of new drugs that are approved each year. New and innovative technologies are needed to solve these problems that make the drug discovery process of small molecules more time and cost efficient, and that allow previously undruggable receptor classes to be targeted, such as protein-protein interactions. Structure-based virtual screenings (SBVSs) have become a leading contender in this context. In this review, we give an introduction to the foundations of SBVSs and survey their progress in the past few years with a focus on ultralarge virtual screenings (ULVSs). We outline key principles of SBVSs, recent success stories, new screening techniques, available deep learning-based docking methods, and promising future research directions. ULVSs have an enormous potential for the development of new small-molecule drugs and are already starting to transform early-stage drug discovery.
期刊介绍:
The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.