p66Shc缺失会失调小鼠胚胎干细胞中ERK和STAT3的活性,增强它们在白血病抑制因子存在下的幼稚样自我更新。

IF 2.5 3区 医学 Q3 CELL & TISSUE ENGINEERING
Andrew Powell, Nicole A Edwards, Hailey L M Hunter, Patti Kaiser, Andrew John Watson, Robert Cumming, Dean Harvey Betts
{"title":"p66Shc缺失会失调小鼠胚胎干细胞中ERK和STAT3的活性,增强它们在白血病抑制因子存在下的幼稚样自我更新。","authors":"Andrew Powell,&nbsp;Nicole A Edwards,&nbsp;Hailey L M Hunter,&nbsp;Patti Kaiser,&nbsp;Andrew John Watson,&nbsp;Robert Cumming,&nbsp;Dean Harvey Betts","doi":"10.1089/scd.2022.0283","DOIUrl":null,"url":null,"abstract":"<p><p>The ShcA adapter protein is necessary for early embryonic development. The role of ShcA in development is primarily attributed to its 52 and 46 kDa isoforms that transduce receptor tyrosine kinase signaling through the extracellular signal regulated kinase (ERK). During embryogenesis, ERK acts as the primary signaling effector, driving fate acquisition and germ layer specification. P66Shc, the largest of the ShcA isoforms, has been observed to antagonize ERK in several contexts; however, its role during embryonic development remains poorly understood. We hypothesized that p66Shc could act as a negative regulator of ERK activity during embryonic development, antagonizing early lineage commitment. To explore the role of p66Shc in stem cell self-renewal and differentiation, we created a <i>p66Shc</i> knockout murine embryonic stem cell (mESC) line. Deletion of <i>p66Shc</i> enhanced basal ERK activity, but surprisingly, instead of inducing mESC differentiation, loss of p66Shc enhanced the expression of core and naive pluripotency markers. Using pharmacologic inhibitors to interrogate potential signaling mechanisms, we discovered that p66Shc deletion permits the self-renewal of naive mESCs in the absence of conventional growth factors, by increasing their responsiveness to leukemia inhibitory factor (LIF). We discovered that loss of p66Shc enhanced not only increased ERK phosphorylation but also increased phosphorylation of Signal transducer and activator of transcription in mESCs, which may be acting to stabilize their naive-like identity, desensitizing them to ERK-mediated differentiation cues. These findings identify p66Shc as a regulator of both LIF-mediated ESC pluripotency and of signaling cascades that initiate postimplantation embryonic development and ESC commitment.</p>","PeriodicalId":21934,"journal":{"name":"Stem cells and development","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deletion of <i>p66Shc</i> Dysregulates ERK and STAT3 Activity in Mouse Embryonic Stem Cells, Enhancing Their Naive-Like Self-Renewal in the Presence of Leukemia Inhibitory Factor.\",\"authors\":\"Andrew Powell,&nbsp;Nicole A Edwards,&nbsp;Hailey L M Hunter,&nbsp;Patti Kaiser,&nbsp;Andrew John Watson,&nbsp;Robert Cumming,&nbsp;Dean Harvey Betts\",\"doi\":\"10.1089/scd.2022.0283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ShcA adapter protein is necessary for early embryonic development. The role of ShcA in development is primarily attributed to its 52 and 46 kDa isoforms that transduce receptor tyrosine kinase signaling through the extracellular signal regulated kinase (ERK). During embryogenesis, ERK acts as the primary signaling effector, driving fate acquisition and germ layer specification. P66Shc, the largest of the ShcA isoforms, has been observed to antagonize ERK in several contexts; however, its role during embryonic development remains poorly understood. We hypothesized that p66Shc could act as a negative regulator of ERK activity during embryonic development, antagonizing early lineage commitment. To explore the role of p66Shc in stem cell self-renewal and differentiation, we created a <i>p66Shc</i> knockout murine embryonic stem cell (mESC) line. Deletion of <i>p66Shc</i> enhanced basal ERK activity, but surprisingly, instead of inducing mESC differentiation, loss of p66Shc enhanced the expression of core and naive pluripotency markers. Using pharmacologic inhibitors to interrogate potential signaling mechanisms, we discovered that p66Shc deletion permits the self-renewal of naive mESCs in the absence of conventional growth factors, by increasing their responsiveness to leukemia inhibitory factor (LIF). We discovered that loss of p66Shc enhanced not only increased ERK phosphorylation but also increased phosphorylation of Signal transducer and activator of transcription in mESCs, which may be acting to stabilize their naive-like identity, desensitizing them to ERK-mediated differentiation cues. These findings identify p66Shc as a regulator of both LIF-mediated ESC pluripotency and of signaling cascades that initiate postimplantation embryonic development and ESC commitment.</p>\",\"PeriodicalId\":21934,\"journal\":{\"name\":\"Stem cells and development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem cells and development\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/scd.2022.0283\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cells and development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/scd.2022.0283","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

ShcA适配蛋白是早期胚胎发育所必需的。ShcA在发育中的作用主要归因于其52和46 kDa亚型,这些亚型通过细胞外信号调节激酶(ERK)转导受体酪氨酸激酶信号。在胚胎发生过程中,ERK作为主要的信号效应因子,驱动命运获取和胚层规范。P66Shc是最大的ShcA亚型,已被观察到在几种情况下拮抗ERK;然而,它在胚胎发育中的作用仍然知之甚少。我们假设p66Shc可能在胚胎发育过程中作为ERK活性的负调节因子,对抗早期谱系承诺。为了探索p66Shc在干细胞自我更新和分化中的作用,我们建立了p66Shc敲除小鼠胚胎干细胞(mESC)系。p66Shc的缺失增强了ERK的基础活性,但令人惊讶的是,p66Shc的缺失并没有诱导mESC分化,而是增强了核心和初始多能性标记物的表达。使用药物抑制剂来询问潜在的信号机制,我们发现p66Shc缺失通过增加其对白血病抑制因子(LIF)的反应,允许在缺乏常规生长因子的情况下初始mESCs的自我更新。我们发现p66Shc的缺失不仅增加了mESCs中ERK的磷酸化,还增加了mESCs中信号换能器和转录激活因子的磷酸化,这可能有助于稳定mESCs的幼稚特性,使其对ERK介导的分化信号不敏感。这些发现表明p66Shc是fif介导的ESC多能性和启动胚胎移植后胚胎发育和ESC承诺的信号级联的调节剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deletion of p66Shc Dysregulates ERK and STAT3 Activity in Mouse Embryonic Stem Cells, Enhancing Their Naive-Like Self-Renewal in the Presence of Leukemia Inhibitory Factor.

The ShcA adapter protein is necessary for early embryonic development. The role of ShcA in development is primarily attributed to its 52 and 46 kDa isoforms that transduce receptor tyrosine kinase signaling through the extracellular signal regulated kinase (ERK). During embryogenesis, ERK acts as the primary signaling effector, driving fate acquisition and germ layer specification. P66Shc, the largest of the ShcA isoforms, has been observed to antagonize ERK in several contexts; however, its role during embryonic development remains poorly understood. We hypothesized that p66Shc could act as a negative regulator of ERK activity during embryonic development, antagonizing early lineage commitment. To explore the role of p66Shc in stem cell self-renewal and differentiation, we created a p66Shc knockout murine embryonic stem cell (mESC) line. Deletion of p66Shc enhanced basal ERK activity, but surprisingly, instead of inducing mESC differentiation, loss of p66Shc enhanced the expression of core and naive pluripotency markers. Using pharmacologic inhibitors to interrogate potential signaling mechanisms, we discovered that p66Shc deletion permits the self-renewal of naive mESCs in the absence of conventional growth factors, by increasing their responsiveness to leukemia inhibitory factor (LIF). We discovered that loss of p66Shc enhanced not only increased ERK phosphorylation but also increased phosphorylation of Signal transducer and activator of transcription in mESCs, which may be acting to stabilize their naive-like identity, desensitizing them to ERK-mediated differentiation cues. These findings identify p66Shc as a regulator of both LIF-mediated ESC pluripotency and of signaling cascades that initiate postimplantation embryonic development and ESC commitment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stem cells and development
Stem cells and development 医学-细胞与组织工程
CiteScore
7.80
自引率
2.50%
发文量
69
审稿时长
3 months
期刊介绍: Stem Cells and Development is globally recognized as the trusted source for critical, even controversial coverage of emerging hypotheses and novel findings. With a focus on stem cells of all tissue types and their potential therapeutic applications, the Journal provides clinical, basic, and translational scientists with cutting-edge research and findings. Stem Cells and Development coverage includes: Embryogenesis and adult counterparts of this process Physical processes linking stem cells, primary cell function, and structural development Hypotheses exploring the relationship between genotype and phenotype Development of vasculature, CNS, and other germ layer development and defects Pluripotentiality of embryonic and somatic stem cells The role of genetic and epigenetic factors in development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信