Emily Flynn, Ana Almonte-Loya, Gabriela K Fragiadakis
{"title":"单细胞多组学","authors":"Emily Flynn, Ana Almonte-Loya, Gabriela K Fragiadakis","doi":"10.1146/annurev-biodatasci-020422-050645","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell RNA sequencing methods have led to improved understanding of the heterogeneity and transcriptomic states present in complex biological systems. Recently, the development of novel single-cell technologies for assaying additional modalities, specifically genomic, epigenomic, proteomic, and spatial data, allows for unprecedented insight into cellular biology. While certain technologies collect multiple measurements from the same cells simultaneously, even when modalities are separately assayed in different cells, we can apply novel computational methods to integrate these data. The application of computational integration methods to multimodal paired and unpaired data results in rich information about the identities of the cells present and the interactions between different levels of biology, such as between genetic variation and transcription. In this review, we both discuss the single-cell technologies for measuring these modalities and describe and characterize a variety of computational integration methods for combining the resulting data to leverage multimodal information toward greater biological insight.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11146013/pdf/","citationCount":"0","resultStr":"{\"title\":\"Single-Cell Multiomics.\",\"authors\":\"Emily Flynn, Ana Almonte-Loya, Gabriela K Fragiadakis\",\"doi\":\"10.1146/annurev-biodatasci-020422-050645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-cell RNA sequencing methods have led to improved understanding of the heterogeneity and transcriptomic states present in complex biological systems. Recently, the development of novel single-cell technologies for assaying additional modalities, specifically genomic, epigenomic, proteomic, and spatial data, allows for unprecedented insight into cellular biology. While certain technologies collect multiple measurements from the same cells simultaneously, even when modalities are separately assayed in different cells, we can apply novel computational methods to integrate these data. The application of computational integration methods to multimodal paired and unpaired data results in rich information about the identities of the cells present and the interactions between different levels of biology, such as between genetic variation and transcription. In this review, we both discuss the single-cell technologies for measuring these modalities and describe and characterize a variety of computational integration methods for combining the resulting data to leverage multimodal information toward greater biological insight.</p>\",\"PeriodicalId\":29775,\"journal\":{\"name\":\"Annual Review of Biomedical Data Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11146013/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Biomedical Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-biodatasci-020422-050645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-biodatasci-020422-050645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Single-cell RNA sequencing methods have led to improved understanding of the heterogeneity and transcriptomic states present in complex biological systems. Recently, the development of novel single-cell technologies for assaying additional modalities, specifically genomic, epigenomic, proteomic, and spatial data, allows for unprecedented insight into cellular biology. While certain technologies collect multiple measurements from the same cells simultaneously, even when modalities are separately assayed in different cells, we can apply novel computational methods to integrate these data. The application of computational integration methods to multimodal paired and unpaired data results in rich information about the identities of the cells present and the interactions between different levels of biology, such as between genetic variation and transcription. In this review, we both discuss the single-cell technologies for measuring these modalities and describe and characterize a variety of computational integration methods for combining the resulting data to leverage multimodal information toward greater biological insight.
期刊介绍:
The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.