Stephanie T Grady, Jaime E Hart, Francine Laden, Charlotte Roscoe, Daniel D Nguyen, Elizabeth J Nelson, Matthew Bozigar, Trang VoPham, JoAnn E Manson, Jennifer Weuve, Sara D Adar, John P Forman, Kathryn Rexrode, Jonathan I Levy, Junenette L Peters
{"title":"美国女护士队列中长期飞机噪音暴露、心血管疾病和死亡率之间的关系。","authors":"Stephanie T Grady, Jaime E Hart, Francine Laden, Charlotte Roscoe, Daniel D Nguyen, Elizabeth J Nelson, Matthew Bozigar, Trang VoPham, JoAnn E Manson, Jennifer Weuve, Sara D Adar, John P Forman, Kathryn Rexrode, Jonathan I Levy, Junenette L Peters","doi":"10.1097/EE9.0000000000000259","DOIUrl":null,"url":null,"abstract":"<p><p>There is limited research examining aircraft noise and cardiovascular disease (CVD) risk. The objective of this study was to investigate associations of aircraft noise with CVD among two US cohorts, the Nurses' Health Study (NHS) and Nurses' Health Study II (NHSII).</p><p><strong>Methods: </strong>Between 1994 and 2014, we followed 57,306 NHS and 60,058 NHSII participants surrounding 90 airports. Aircraft noise was modeled above 44 A-weighted decibels (dB(A)) and linked to geocoded addresses. Based on exposure distributions, we dichotomized exposures at 50 dB(A) and tested sensitivity of this cut-point by analyzing aircraft noise as categories (<i><</i>45, 45-49, 50-54, ≥55) and continuously. We fit cohort-specific Cox proportional hazards models to estimate relationships between time-varying day-night average sound level (DNL) and CVD incidence and CVD and all-cause mortality, adjusting for fixed and time-varying individual- and area-level covariates. Results were pooled using random effects meta-analysis.</p><p><strong>Results: </strong>Over 20 years of follow-up, there were 4529 CVD cases and 14,930 deaths. Approximately 7% (n = 317) of CVD cases were exposed to DNL ≥50 dB(A). In pooled analyses comparing ≥50 with <50 dB(A), the adjusted hazard ratio for CVD incidence was 1.00 (95% confidence interval: 0.89, 1.12). The corresponding adjusted hazard ratio for all-cause mortality was 1.02 (95% confidence interval: 0.96, 1.09). Patterns were similar for CVD mortality in NHS yet underpowered.</p><p><strong>Conclusions: </strong>Among participants in the NHS and NHSII prospective cohorts who generally experience low exposure to aircraft noise, we did not find adverse associations of aircraft noise with CVD incidence, CVD mortality, or all-cause mortality.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10402956/pdf/","citationCount":"0","resultStr":"{\"title\":\"Associations between long-term aircraft noise exposure, cardiovascular disease, and mortality in US cohorts of female nurses.\",\"authors\":\"Stephanie T Grady, Jaime E Hart, Francine Laden, Charlotte Roscoe, Daniel D Nguyen, Elizabeth J Nelson, Matthew Bozigar, Trang VoPham, JoAnn E Manson, Jennifer Weuve, Sara D Adar, John P Forman, Kathryn Rexrode, Jonathan I Levy, Junenette L Peters\",\"doi\":\"10.1097/EE9.0000000000000259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is limited research examining aircraft noise and cardiovascular disease (CVD) risk. The objective of this study was to investigate associations of aircraft noise with CVD among two US cohorts, the Nurses' Health Study (NHS) and Nurses' Health Study II (NHSII).</p><p><strong>Methods: </strong>Between 1994 and 2014, we followed 57,306 NHS and 60,058 NHSII participants surrounding 90 airports. Aircraft noise was modeled above 44 A-weighted decibels (dB(A)) and linked to geocoded addresses. Based on exposure distributions, we dichotomized exposures at 50 dB(A) and tested sensitivity of this cut-point by analyzing aircraft noise as categories (<i><</i>45, 45-49, 50-54, ≥55) and continuously. We fit cohort-specific Cox proportional hazards models to estimate relationships between time-varying day-night average sound level (DNL) and CVD incidence and CVD and all-cause mortality, adjusting for fixed and time-varying individual- and area-level covariates. Results were pooled using random effects meta-analysis.</p><p><strong>Results: </strong>Over 20 years of follow-up, there were 4529 CVD cases and 14,930 deaths. Approximately 7% (n = 317) of CVD cases were exposed to DNL ≥50 dB(A). In pooled analyses comparing ≥50 with <50 dB(A), the adjusted hazard ratio for CVD incidence was 1.00 (95% confidence interval: 0.89, 1.12). The corresponding adjusted hazard ratio for all-cause mortality was 1.02 (95% confidence interval: 0.96, 1.09). Patterns were similar for CVD mortality in NHS yet underpowered.</p><p><strong>Conclusions: </strong>Among participants in the NHS and NHSII prospective cohorts who generally experience low exposure to aircraft noise, we did not find adverse associations of aircraft noise with CVD incidence, CVD mortality, or all-cause mortality.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10402956/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1097/EE9.0000000000000259\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/EE9.0000000000000259","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Associations between long-term aircraft noise exposure, cardiovascular disease, and mortality in US cohorts of female nurses.
There is limited research examining aircraft noise and cardiovascular disease (CVD) risk. The objective of this study was to investigate associations of aircraft noise with CVD among two US cohorts, the Nurses' Health Study (NHS) and Nurses' Health Study II (NHSII).
Methods: Between 1994 and 2014, we followed 57,306 NHS and 60,058 NHSII participants surrounding 90 airports. Aircraft noise was modeled above 44 A-weighted decibels (dB(A)) and linked to geocoded addresses. Based on exposure distributions, we dichotomized exposures at 50 dB(A) and tested sensitivity of this cut-point by analyzing aircraft noise as categories (<45, 45-49, 50-54, ≥55) and continuously. We fit cohort-specific Cox proportional hazards models to estimate relationships between time-varying day-night average sound level (DNL) and CVD incidence and CVD and all-cause mortality, adjusting for fixed and time-varying individual- and area-level covariates. Results were pooled using random effects meta-analysis.
Results: Over 20 years of follow-up, there were 4529 CVD cases and 14,930 deaths. Approximately 7% (n = 317) of CVD cases were exposed to DNL ≥50 dB(A). In pooled analyses comparing ≥50 with <50 dB(A), the adjusted hazard ratio for CVD incidence was 1.00 (95% confidence interval: 0.89, 1.12). The corresponding adjusted hazard ratio for all-cause mortality was 1.02 (95% confidence interval: 0.96, 1.09). Patterns were similar for CVD mortality in NHS yet underpowered.
Conclusions: Among participants in the NHS and NHSII prospective cohorts who generally experience low exposure to aircraft noise, we did not find adverse associations of aircraft noise with CVD incidence, CVD mortality, or all-cause mortality.