{"title":"使用具有未知形状参数的 Weibull 分布,对具有时间到事件终点的单臂临床试验进行样本量再估计和贝叶斯预测概率。","authors":"Muhammad Waleed, Jianghua He, Milind A Phadnis","doi":"10.1080/10543406.2023.2234998","DOIUrl":null,"url":null,"abstract":"<p><p>This manuscript consists of two topics. Firstly, we explore the utility of internal pilot study (IPS) approach for reestimating sample size at an interim stage when a reliable estimate of the nuisance shape parameter of the Weibull distribution for modeling survival data is unavailable during the planning phase of a study. Although IPS approach can help rescue the study power, it is noted that the adjusted sample size can be as much as twice the initially planned sample size, which may put substantial practical constraints to continue the study. Secondly, we discuss Bayesian predictive probability for conducting interim analyses to obtain preliminary evidence of efficacy or futility of an experimental treatment warranting early termination of a clinical trial. In the context of single-arm clinical trials with time-to-event endpoints following Weibull distribution, we present the calculation of the Bayesian predictive probability when the shape parameter of the Weibull distribution is unknown. Based on the data accumulated at the interim, we propose two approaches which rely on the posterior mode or the entire posterior distribution of the shape parameter. To account for uncertainty in the shape parameter, it is recommended to incorporate its entire posterior distribution in our calculation.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"469-487"},"PeriodicalIF":1.2000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sample size reestimation and Bayesian predictive probability for single-arm clinical trials with a time-to-event endpoint using Weibull distribution with unknown shape parameter.\",\"authors\":\"Muhammad Waleed, Jianghua He, Milind A Phadnis\",\"doi\":\"10.1080/10543406.2023.2234998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This manuscript consists of two topics. Firstly, we explore the utility of internal pilot study (IPS) approach for reestimating sample size at an interim stage when a reliable estimate of the nuisance shape parameter of the Weibull distribution for modeling survival data is unavailable during the planning phase of a study. Although IPS approach can help rescue the study power, it is noted that the adjusted sample size can be as much as twice the initially planned sample size, which may put substantial practical constraints to continue the study. Secondly, we discuss Bayesian predictive probability for conducting interim analyses to obtain preliminary evidence of efficacy or futility of an experimental treatment warranting early termination of a clinical trial. In the context of single-arm clinical trials with time-to-event endpoints following Weibull distribution, we present the calculation of the Bayesian predictive probability when the shape parameter of the Weibull distribution is unknown. Based on the data accumulated at the interim, we propose two approaches which rely on the posterior mode or the entire posterior distribution of the shape parameter. To account for uncertainty in the shape parameter, it is recommended to incorporate its entire posterior distribution in our calculation.</p>\",\"PeriodicalId\":54870,\"journal\":{\"name\":\"Journal of Biopharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"469-487\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biopharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10543406.2023.2234998\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2023.2234998","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/6 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Sample size reestimation and Bayesian predictive probability for single-arm clinical trials with a time-to-event endpoint using Weibull distribution with unknown shape parameter.
This manuscript consists of two topics. Firstly, we explore the utility of internal pilot study (IPS) approach for reestimating sample size at an interim stage when a reliable estimate of the nuisance shape parameter of the Weibull distribution for modeling survival data is unavailable during the planning phase of a study. Although IPS approach can help rescue the study power, it is noted that the adjusted sample size can be as much as twice the initially planned sample size, which may put substantial practical constraints to continue the study. Secondly, we discuss Bayesian predictive probability for conducting interim analyses to obtain preliminary evidence of efficacy or futility of an experimental treatment warranting early termination of a clinical trial. In the context of single-arm clinical trials with time-to-event endpoints following Weibull distribution, we present the calculation of the Bayesian predictive probability when the shape parameter of the Weibull distribution is unknown. Based on the data accumulated at the interim, we propose two approaches which rely on the posterior mode or the entire posterior distribution of the shape parameter. To account for uncertainty in the shape parameter, it is recommended to incorporate its entire posterior distribution in our calculation.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.