加热速率和烧结时间对单片氧化锆陶瓷双轴抗折强度的影响。

IF 1.3 4区 医学 Q4 ENGINEERING, BIOMEDICAL
Perihan Oyar, Rukiye Durkan
{"title":"加热速率和烧结时间对单片氧化锆陶瓷双轴抗折强度的影响。","authors":"Perihan Oyar,&nbsp;Rukiye Durkan","doi":"10.1515/bmt-2022-0338","DOIUrl":null,"url":null,"abstract":"<p><p>The strength of zirconia ceramic materials used in restorations is dependent upon sintering. Varying sintering protocols may affect the biaxial flexural strength of zirconia materials. This in vitro study was conducted to investigate the effects of sintering parameters on the biaxial flexural strength of monolithic zirconia. Two different monoblock zirconia ceramics were used. Following coloration, samples of both types of ceramics were divided into groups according to whether or not biaxial flexural strength testing was performed directly after sintering or following thermocycling. Biaxial flexural strength data was analysed with a Shapiro Wilk normality test, followed by 1-way ANOVA, Tukey post hoc tests for inter-group comparisons, and paired samples t-tests for intra-group comparisons. A significant difference was found between the biaxial flexural strengths of Zircon X and Upcera ceramics before thermocycling (p<0.05). In both Zircon X and Upcera ceramic groups, the thermocycling process created a significant difference in the biaxial flexural strength values of the ceramic samples in Group 6 (p<0.05) which had the slowest heating rate and longest holding time. The zirconia ceramics have higher BFS at higher heating rates either before or after thermocycling. The holding time has significant effects on thermocycling and flexural strength. The zirconia achieved its optimum strength when it sintered at longer time regardless of heating rates.</p>","PeriodicalId":8900,"journal":{"name":"Biomedical Engineering / Biomedizinische Technik","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The effects of heating rate and sintering time on the biaxial flexural strength of monolithic zirconia ceramics.\",\"authors\":\"Perihan Oyar,&nbsp;Rukiye Durkan\",\"doi\":\"10.1515/bmt-2022-0338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The strength of zirconia ceramic materials used in restorations is dependent upon sintering. Varying sintering protocols may affect the biaxial flexural strength of zirconia materials. This in vitro study was conducted to investigate the effects of sintering parameters on the biaxial flexural strength of monolithic zirconia. Two different monoblock zirconia ceramics were used. Following coloration, samples of both types of ceramics were divided into groups according to whether or not biaxial flexural strength testing was performed directly after sintering or following thermocycling. Biaxial flexural strength data was analysed with a Shapiro Wilk normality test, followed by 1-way ANOVA, Tukey post hoc tests for inter-group comparisons, and paired samples t-tests for intra-group comparisons. A significant difference was found between the biaxial flexural strengths of Zircon X and Upcera ceramics before thermocycling (p<0.05). In both Zircon X and Upcera ceramic groups, the thermocycling process created a significant difference in the biaxial flexural strength values of the ceramic samples in Group 6 (p<0.05) which had the slowest heating rate and longest holding time. The zirconia ceramics have higher BFS at higher heating rates either before or after thermocycling. The holding time has significant effects on thermocycling and flexural strength. The zirconia achieved its optimum strength when it sintered at longer time regardless of heating rates.</p>\",\"PeriodicalId\":8900,\"journal\":{\"name\":\"Biomedical Engineering / Biomedizinische Technik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering / Biomedizinische Technik\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/bmt-2022-0338\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering / Biomedizinische Technik","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/bmt-2022-0338","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1

摘要

用于修复的氧化锆陶瓷材料的强度取决于烧结。不同的烧结工艺会影响氧化锆材料的双轴抗折强度。本文通过体外实验研究了烧结参数对整体氧化锆双轴抗折强度的影响。使用了两种不同的单块氧化锆陶瓷。着色后,根据是烧结后直接进行双轴抗折强度测试,还是热循环后进行双轴抗折强度测试,将两种陶瓷样品进行分组。双轴抗折强度数据采用Shapiro Wilk正态检验进行分析,随后采用单因素方差分析,组间比较采用Tukey事后检验,组内比较采用配对样本t检验。在热循环前,锆石X和Upcera陶瓷的双轴抗折强度存在显著差异(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effects of heating rate and sintering time on the biaxial flexural strength of monolithic zirconia ceramics.

The strength of zirconia ceramic materials used in restorations is dependent upon sintering. Varying sintering protocols may affect the biaxial flexural strength of zirconia materials. This in vitro study was conducted to investigate the effects of sintering parameters on the biaxial flexural strength of monolithic zirconia. Two different monoblock zirconia ceramics were used. Following coloration, samples of both types of ceramics were divided into groups according to whether or not biaxial flexural strength testing was performed directly after sintering or following thermocycling. Biaxial flexural strength data was analysed with a Shapiro Wilk normality test, followed by 1-way ANOVA, Tukey post hoc tests for inter-group comparisons, and paired samples t-tests for intra-group comparisons. A significant difference was found between the biaxial flexural strengths of Zircon X and Upcera ceramics before thermocycling (p<0.05). In both Zircon X and Upcera ceramic groups, the thermocycling process created a significant difference in the biaxial flexural strength values of the ceramic samples in Group 6 (p<0.05) which had the slowest heating rate and longest holding time. The zirconia ceramics have higher BFS at higher heating rates either before or after thermocycling. The holding time has significant effects on thermocycling and flexural strength. The zirconia achieved its optimum strength when it sintered at longer time regardless of heating rates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
5.90%
发文量
58
审稿时长
2-3 weeks
期刊介绍: Biomedical Engineering / Biomedizinische Technik (BMT) is a high-quality forum for the exchange of knowledge in the fields of biomedical engineering, medical information technology and biotechnology/bioengineering. As an established journal with a tradition of more than 60 years, BMT addresses engineers, natural scientists, and clinicians working in research, industry, or clinical practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信