Florian Micke, Steffen Held, Jessica Lindenthal, Lars Donath
{"title":"肌电刺激对运动和训练运动员表现参数的影响:系统回顾和网络荟萃分析。","authors":"Florian Micke, Steffen Held, Jessica Lindenthal, Lars Donath","doi":"10.1080/17461391.2022.2107437","DOIUrl":null,"url":null,"abstract":"<p><p>This systematic review and network meta-analysis aimed to evaluate the effectiveness of different electromyostimulation (EMS) interventions on performance parameters in athletes. The research was conducted until May 2021 using the online databases PubMed, Web of Science, Cochrane and SPORTDiscus for studies with the following inclusion criteria: (a) controlled trials, (b) EMS trials with at least one exercise and/or control group, (c) strength and/or jump and/or sprint and/or aerobic capacity parameter as outcome (d) sportive/trained subjects. Standardized mean differences (SMD) with 95% confidence interval (CI) and random effects models were calculated. Thirty-six studies with 1.092 participants were selected and 4 different networks (strength, jump, sprint, aerobic capacity) were built. A ranking of different exercise methods was achieved. The highest effects for pairwise comparisons against the reference control \"active control\" were found for a combination of resistance training with superimposed EMS and additional jump training (outcome strength: 4.43 SMD [2.15; 6.70 CI]; outcome jump: 3.14 SMD [1.80; 4.49 CI]), jump training with superimposed whole-body electromyostimulation (WB-EMS) (outcome sprint: 1.65 SMD [0.67; 2.63 CI]) and high intensity bodyweight resistance training with superimposed WB-EMS (outcome aerobic capacity: 0.83 SMD [-0.49; 2.16 CI]). These findings indicate that the choice of EMS-specific factors such as the application mode, the combination with voluntary activation, and the selection of stimulation protocols has an impact on the magnitude of the effects and should therefore be carefully considered, especially in athletes. Superimposed EMS with relatively low volume, high intensity and outcome-specific movement patterns appeared to positively influence adaptations in athletes.<b>Highlights</b>Key performance parameters such as maximal strength, jump height and sprint time can be increased by adequate EMS intervention programs in already well-trained athletes.The effectiveness of EMS training in athletes is highly dependent on the selected EMS method. Volume, intensity, exercise and movement specificity play a crucial role for the efficiency of the training.The most effective option for athletes appears to be a combination of superimposed EMS with relatively low EMS volume, high intensity, and movement-specific exercise pattern.</p>","PeriodicalId":12061,"journal":{"name":"European Journal of Sport Science","volume":"23 8","pages":"1570-1580"},"PeriodicalIF":2.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Effects of electromyostimulation on performance parameters in sportive and trained athletes: A systematic review and network meta-analysis.\",\"authors\":\"Florian Micke, Steffen Held, Jessica Lindenthal, Lars Donath\",\"doi\":\"10.1080/17461391.2022.2107437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This systematic review and network meta-analysis aimed to evaluate the effectiveness of different electromyostimulation (EMS) interventions on performance parameters in athletes. The research was conducted until May 2021 using the online databases PubMed, Web of Science, Cochrane and SPORTDiscus for studies with the following inclusion criteria: (a) controlled trials, (b) EMS trials with at least one exercise and/or control group, (c) strength and/or jump and/or sprint and/or aerobic capacity parameter as outcome (d) sportive/trained subjects. Standardized mean differences (SMD) with 95% confidence interval (CI) and random effects models were calculated. Thirty-six studies with 1.092 participants were selected and 4 different networks (strength, jump, sprint, aerobic capacity) were built. A ranking of different exercise methods was achieved. The highest effects for pairwise comparisons against the reference control \\\"active control\\\" were found for a combination of resistance training with superimposed EMS and additional jump training (outcome strength: 4.43 SMD [2.15; 6.70 CI]; outcome jump: 3.14 SMD [1.80; 4.49 CI]), jump training with superimposed whole-body electromyostimulation (WB-EMS) (outcome sprint: 1.65 SMD [0.67; 2.63 CI]) and high intensity bodyweight resistance training with superimposed WB-EMS (outcome aerobic capacity: 0.83 SMD [-0.49; 2.16 CI]). These findings indicate that the choice of EMS-specific factors such as the application mode, the combination with voluntary activation, and the selection of stimulation protocols has an impact on the magnitude of the effects and should therefore be carefully considered, especially in athletes. Superimposed EMS with relatively low volume, high intensity and outcome-specific movement patterns appeared to positively influence adaptations in athletes.<b>Highlights</b>Key performance parameters such as maximal strength, jump height and sprint time can be increased by adequate EMS intervention programs in already well-trained athletes.The effectiveness of EMS training in athletes is highly dependent on the selected EMS method. Volume, intensity, exercise and movement specificity play a crucial role for the efficiency of the training.The most effective option for athletes appears to be a combination of superimposed EMS with relatively low EMS volume, high intensity, and movement-specific exercise pattern.</p>\",\"PeriodicalId\":12061,\"journal\":{\"name\":\"European Journal of Sport Science\",\"volume\":\"23 8\",\"pages\":\"1570-1580\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Sport Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17461391.2022.2107437\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SPORT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Sport Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17461391.2022.2107437","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
Effects of electromyostimulation on performance parameters in sportive and trained athletes: A systematic review and network meta-analysis.
This systematic review and network meta-analysis aimed to evaluate the effectiveness of different electromyostimulation (EMS) interventions on performance parameters in athletes. The research was conducted until May 2021 using the online databases PubMed, Web of Science, Cochrane and SPORTDiscus for studies with the following inclusion criteria: (a) controlled trials, (b) EMS trials with at least one exercise and/or control group, (c) strength and/or jump and/or sprint and/or aerobic capacity parameter as outcome (d) sportive/trained subjects. Standardized mean differences (SMD) with 95% confidence interval (CI) and random effects models were calculated. Thirty-six studies with 1.092 participants were selected and 4 different networks (strength, jump, sprint, aerobic capacity) were built. A ranking of different exercise methods was achieved. The highest effects for pairwise comparisons against the reference control "active control" were found for a combination of resistance training with superimposed EMS and additional jump training (outcome strength: 4.43 SMD [2.15; 6.70 CI]; outcome jump: 3.14 SMD [1.80; 4.49 CI]), jump training with superimposed whole-body electromyostimulation (WB-EMS) (outcome sprint: 1.65 SMD [0.67; 2.63 CI]) and high intensity bodyweight resistance training with superimposed WB-EMS (outcome aerobic capacity: 0.83 SMD [-0.49; 2.16 CI]). These findings indicate that the choice of EMS-specific factors such as the application mode, the combination with voluntary activation, and the selection of stimulation protocols has an impact on the magnitude of the effects and should therefore be carefully considered, especially in athletes. Superimposed EMS with relatively low volume, high intensity and outcome-specific movement patterns appeared to positively influence adaptations in athletes.HighlightsKey performance parameters such as maximal strength, jump height and sprint time can be increased by adequate EMS intervention programs in already well-trained athletes.The effectiveness of EMS training in athletes is highly dependent on the selected EMS method. Volume, intensity, exercise and movement specificity play a crucial role for the efficiency of the training.The most effective option for athletes appears to be a combination of superimposed EMS with relatively low EMS volume, high intensity, and movement-specific exercise pattern.
期刊介绍:
The European Journal of Sport Science (EJSS) is the official Medline- and Thomson Reuters-listed journal of the European College of Sport Science. The editorial policy of the Journal pursues the multi-disciplinary aims of the College: to promote the highest standards of scientific study and scholarship in respect of the following fields: (a) Applied Sport Sciences; (b) Biomechanics and Motor Control; c) Physiology and Nutrition; (d) Psychology, Social Sciences and Humanities and (e) Sports and Exercise Medicine and Health.