D 型 K+ 电流以物种特异性的方式支配着电耦合神经元的功能。

IF 3.3 2区 医学 Q1 PHYSIOLOGY
Journal of General Physiology Pub Date : 2023-09-04 Epub Date: 2023-06-28 DOI:10.1085/jgp.202313353
Antonella Dapino, Federico Davoine, Sebastian Curti
{"title":"D 型 K+ 电流以物种特异性的方式支配着电耦合神经元的功能。","authors":"Antonella Dapino, Federico Davoine, Sebastian Curti","doi":"10.1085/jgp.202313353","DOIUrl":null,"url":null,"abstract":"<p><p>Electrical synapses supported by gap junctions are known to form networks of electrically coupled neurons in many regions of the mammalian brain, where they play relevant functional roles. Yet, how electrical coupling supports sophisticated network operations and the contribution of the intrinsic electrophysiological properties of neurons to these operations remain incompletely understood. Here, a comparative analysis of electrically coupled mesencephalic trigeminal (MesV) neurons uncovered remarkable difference in the operation of these networks in highly related species. While spiking of MesV neurons might support the recruitment of coupled cells in rats, this rarely occurs in mice. Using whole-cell recordings, we determined that the higher efficacy in postsynaptic recruitment in rat's MesV neurons does not result from coupling strength of larger magnitude, but instead from the higher excitability of coupled neurons. Consistently, MesV neurons from rats present a lower rheobase, more hyperpolarized threshold, as well as a higher ability to generate repetitive discharges, in comparison to their counterparts from mice. This difference in neuronal excitability results from a significantly higher magnitude of the D-type K+ current (ID) in MesV neurons from mice, indicating that the magnitude of this current gates the recruitment of postsynaptic-coupled neurons. Since MesV neurons are primary afferents critically involved in the organization of orofacial behaviors, activation of a coupled partner could support lateral excitation, which by amplifying sensory inputs may significantly contribute to information processing and the organization of motor outputs.</p>","PeriodicalId":54828,"journal":{"name":"Journal of General Physiology","volume":"155 9","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10308032/pdf/","citationCount":"1","resultStr":"{\"title\":\"D-type K+ current rules the function of electrically coupled neurons in a species-specific fashion.\",\"authors\":\"Antonella Dapino, Federico Davoine, Sebastian Curti\",\"doi\":\"10.1085/jgp.202313353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electrical synapses supported by gap junctions are known to form networks of electrically coupled neurons in many regions of the mammalian brain, where they play relevant functional roles. Yet, how electrical coupling supports sophisticated network operations and the contribution of the intrinsic electrophysiological properties of neurons to these operations remain incompletely understood. Here, a comparative analysis of electrically coupled mesencephalic trigeminal (MesV) neurons uncovered remarkable difference in the operation of these networks in highly related species. While spiking of MesV neurons might support the recruitment of coupled cells in rats, this rarely occurs in mice. Using whole-cell recordings, we determined that the higher efficacy in postsynaptic recruitment in rat's MesV neurons does not result from coupling strength of larger magnitude, but instead from the higher excitability of coupled neurons. Consistently, MesV neurons from rats present a lower rheobase, more hyperpolarized threshold, as well as a higher ability to generate repetitive discharges, in comparison to their counterparts from mice. This difference in neuronal excitability results from a significantly higher magnitude of the D-type K+ current (ID) in MesV neurons from mice, indicating that the magnitude of this current gates the recruitment of postsynaptic-coupled neurons. Since MesV neurons are primary afferents critically involved in the organization of orofacial behaviors, activation of a coupled partner could support lateral excitation, which by amplifying sensory inputs may significantly contribute to information processing and the organization of motor outputs.</p>\",\"PeriodicalId\":54828,\"journal\":{\"name\":\"Journal of General Physiology\",\"volume\":\"155 9\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10308032/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of General Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1085/jgp.202313353\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1085/jgp.202313353","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

众所周知,在哺乳动物大脑的许多区域,由间隙连接支持的电突触形成了电耦合神经元网络,并在其中发挥着相关的功能作用。然而,人们对电耦合如何支持复杂的网络运作以及神经元内在电生理特性对这些运作的贡献仍不甚了解。在这里,对电耦合间脑三叉神经元(MesV)的比较分析发现,在高度相关的物种中,这些网络的运作存在显著差异。在大鼠中,中脑三叉神经元的尖峰刺激可能会支持耦合细胞的招募,但在小鼠中却很少发生。通过全细胞记录,我们确定了大鼠中枢神经元突触后招募的更高效力并不是因为耦合强度更大,而是因为耦合神经元的兴奋性更高。与小鼠的中枢神经元相比,大鼠的中枢神经元具有更低的流变基、更高的超极化阈值以及更强的产生重复放电的能力。神经元兴奋性的这种差异是由于小鼠中枢神经元的 D 型 K+ 电流(ID)幅度明显更高,这表明该电流的幅度控制着突触后耦合神经元的招募。由于中枢神经元是主要的传入神经元,严重参与口面部行为的组织,因此激活耦合伙伴可支持侧向兴奋,而侧向兴奋通过放大感觉输入可极大地促进信息处理和运动输出的组织。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
D-type K+ current rules the function of electrically coupled neurons in a species-specific fashion.

Electrical synapses supported by gap junctions are known to form networks of electrically coupled neurons in many regions of the mammalian brain, where they play relevant functional roles. Yet, how electrical coupling supports sophisticated network operations and the contribution of the intrinsic electrophysiological properties of neurons to these operations remain incompletely understood. Here, a comparative analysis of electrically coupled mesencephalic trigeminal (MesV) neurons uncovered remarkable difference in the operation of these networks in highly related species. While spiking of MesV neurons might support the recruitment of coupled cells in rats, this rarely occurs in mice. Using whole-cell recordings, we determined that the higher efficacy in postsynaptic recruitment in rat's MesV neurons does not result from coupling strength of larger magnitude, but instead from the higher excitability of coupled neurons. Consistently, MesV neurons from rats present a lower rheobase, more hyperpolarized threshold, as well as a higher ability to generate repetitive discharges, in comparison to their counterparts from mice. This difference in neuronal excitability results from a significantly higher magnitude of the D-type K+ current (ID) in MesV neurons from mice, indicating that the magnitude of this current gates the recruitment of postsynaptic-coupled neurons. Since MesV neurons are primary afferents critically involved in the organization of orofacial behaviors, activation of a coupled partner could support lateral excitation, which by amplifying sensory inputs may significantly contribute to information processing and the organization of motor outputs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
10.50%
发文量
88
审稿时长
6-12 weeks
期刊介绍: General physiology is the study of biological mechanisms through analytical investigations, which decipher the molecular and cellular mechanisms underlying biological function at all levels of organization. The mission of Journal of General Physiology (JGP) is to publish mechanistic and quantitative molecular and cellular physiology of the highest quality, to provide a best-in-class author experience, and to nurture future generations of independent researchers. The major emphasis is on physiological problems at the cellular and molecular level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信