{"title":"参气丸方治疗2型糖尿病的网络药理学与分子对接机制研究。","authors":"Piaopiao Zhao, Xiaoxiao Zhang, Yuning Gong, Weihua Li, Zengrui Wu, Yun Tang, Guixia Liu","doi":"10.1007/s40203-022-00124-2","DOIUrl":null,"url":null,"abstract":"<p><p>Shen Qi Wan (SQW) prescription has been used to treat type 2 diabetes mellitus (T2DM) for thousands of years, but its pharmacological mechanism is still unclear. The network pharmacology method was used to reveal the potential pharmacological mechanism of SQW in the treatment of T2DM in this study. Nine core targets were identified through protein-protein interaction (PPI) network analysis and KEGG pathway enrichment analysis, which were AKT1, INSR, SLC2A1, EGFR, PPARG, PPARA, GCK, NOS3, and PTPN1. Besides, this study found that SQW treated the T2DM through insulin resistance (has04931), insulin signaling pathway (has04910), adipocytokine signaling pathway (has04920), AMPK signaling pathway (has04152) and FoxO signaling pathway (has04068) via ingredient-hub target-pathway network analysis. Finally, molecular docking was used to verify the drug-target interaction network in this research. This study provides a certain explanation for treating T2DM by SQW prescription, and provides a certain angle and method for researchers to study the mechanism of TCM in the treatment of complex diseases.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-022-00124-2.</p>","PeriodicalId":13380,"journal":{"name":"In Silico Pharmacology","volume":"10 1","pages":"9"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9167366/pdf/40203_2022_Article_124.pdf","citationCount":"0","resultStr":"{\"title\":\"Investigation of the mechanism of Shen Qi Wan prescription in the treatment of T2DM via network pharmacology and molecular docking.\",\"authors\":\"Piaopiao Zhao, Xiaoxiao Zhang, Yuning Gong, Weihua Li, Zengrui Wu, Yun Tang, Guixia Liu\",\"doi\":\"10.1007/s40203-022-00124-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Shen Qi Wan (SQW) prescription has been used to treat type 2 diabetes mellitus (T2DM) for thousands of years, but its pharmacological mechanism is still unclear. The network pharmacology method was used to reveal the potential pharmacological mechanism of SQW in the treatment of T2DM in this study. Nine core targets were identified through protein-protein interaction (PPI) network analysis and KEGG pathway enrichment analysis, which were AKT1, INSR, SLC2A1, EGFR, PPARG, PPARA, GCK, NOS3, and PTPN1. Besides, this study found that SQW treated the T2DM through insulin resistance (has04931), insulin signaling pathway (has04910), adipocytokine signaling pathway (has04920), AMPK signaling pathway (has04152) and FoxO signaling pathway (has04068) via ingredient-hub target-pathway network analysis. Finally, molecular docking was used to verify the drug-target interaction network in this research. This study provides a certain explanation for treating T2DM by SQW prescription, and provides a certain angle and method for researchers to study the mechanism of TCM in the treatment of complex diseases.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-022-00124-2.</p>\",\"PeriodicalId\":13380,\"journal\":{\"name\":\"In Silico Pharmacology\",\"volume\":\"10 1\",\"pages\":\"9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9167366/pdf/40203_2022_Article_124.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Silico Pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40203-022-00124-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Silico Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40203-022-00124-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation of the mechanism of Shen Qi Wan prescription in the treatment of T2DM via network pharmacology and molecular docking.
Shen Qi Wan (SQW) prescription has been used to treat type 2 diabetes mellitus (T2DM) for thousands of years, but its pharmacological mechanism is still unclear. The network pharmacology method was used to reveal the potential pharmacological mechanism of SQW in the treatment of T2DM in this study. Nine core targets were identified through protein-protein interaction (PPI) network analysis and KEGG pathway enrichment analysis, which were AKT1, INSR, SLC2A1, EGFR, PPARG, PPARA, GCK, NOS3, and PTPN1. Besides, this study found that SQW treated the T2DM through insulin resistance (has04931), insulin signaling pathway (has04910), adipocytokine signaling pathway (has04920), AMPK signaling pathway (has04152) and FoxO signaling pathway (has04068) via ingredient-hub target-pathway network analysis. Finally, molecular docking was used to verify the drug-target interaction network in this research. This study provides a certain explanation for treating T2DM by SQW prescription, and provides a certain angle and method for researchers to study the mechanism of TCM in the treatment of complex diseases.
Supplementary information: The online version contains supplementary material available at 10.1007/s40203-022-00124-2.