神经病理诊断与研究的人工智能技术。

IF 1.3 4区 医学 Q4 CLINICAL NEUROLOGY
Neuropathology Pub Date : 2023-08-01 DOI:10.1111/neup.12880
Islam Alzoubi, Guoqing Bao, Yuqi Zheng, Xiuying Wang, Manuel B Graeber
{"title":"神经病理诊断与研究的人工智能技术。","authors":"Islam Alzoubi,&nbsp;Guoqing Bao,&nbsp;Yuqi Zheng,&nbsp;Xiuying Wang,&nbsp;Manuel B Graeber","doi":"10.1111/neup.12880","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) research began in theoretical neurophysiology, and the resulting classical paper on the McCulloch-Pitts mathematical neuron was written in a psychiatry department almost 80 years ago. However, the application of AI in digital neuropathology is still in its infancy. Rapid progress is now being made, which prompted this article. Human brain diseases represent distinct system states that fall outside the normal spectrum. Many differ not only in functional but also in structural terms, and the morphology of abnormal nervous tissue forms the traditional basis of neuropathological disease classifications. However, only a few countries have the medical specialty of neuropathology, and, given the sheer number of newly developed histological tools that can be applied to the study of brain diseases, a tremendous shortage of qualified hands and eyes at the microscope is obvious. Similarly, in neuroanatomy, human observers no longer have the capacity to process the vast amounts of connectomics data. Therefore, it is reasonable to assume that advances in AI technology and, especially, whole-slide image (WSI) analysis will greatly aid neuropathological practice. In this paper, we discuss machine learning (ML) techniques that are important for understanding WSI analysis, such as traditional ML and deep learning, introduce a recently developed neuropathological AI termed PathoFusion, and present thoughts on some of the challenges that must be overcome before the full potential of AI in digital neuropathology can be realized.</p>","PeriodicalId":19204,"journal":{"name":"Neuropathology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence techniques for neuropathological diagnostics and research.\",\"authors\":\"Islam Alzoubi,&nbsp;Guoqing Bao,&nbsp;Yuqi Zheng,&nbsp;Xiuying Wang,&nbsp;Manuel B Graeber\",\"doi\":\"10.1111/neup.12880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial intelligence (AI) research began in theoretical neurophysiology, and the resulting classical paper on the McCulloch-Pitts mathematical neuron was written in a psychiatry department almost 80 years ago. However, the application of AI in digital neuropathology is still in its infancy. Rapid progress is now being made, which prompted this article. Human brain diseases represent distinct system states that fall outside the normal spectrum. Many differ not only in functional but also in structural terms, and the morphology of abnormal nervous tissue forms the traditional basis of neuropathological disease classifications. However, only a few countries have the medical specialty of neuropathology, and, given the sheer number of newly developed histological tools that can be applied to the study of brain diseases, a tremendous shortage of qualified hands and eyes at the microscope is obvious. Similarly, in neuroanatomy, human observers no longer have the capacity to process the vast amounts of connectomics data. Therefore, it is reasonable to assume that advances in AI technology and, especially, whole-slide image (WSI) analysis will greatly aid neuropathological practice. In this paper, we discuss machine learning (ML) techniques that are important for understanding WSI analysis, such as traditional ML and deep learning, introduce a recently developed neuropathological AI termed PathoFusion, and present thoughts on some of the challenges that must be overcome before the full potential of AI in digital neuropathology can be realized.</p>\",\"PeriodicalId\":19204,\"journal\":{\"name\":\"Neuropathology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/neup.12880\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/neup.12880","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)的研究始于理论神经生理学,由此产生的关于麦卡洛克-皮茨数学神经元的经典论文是近80年前在精神病学部门写的。然而,人工智能在数字神经病理学中的应用仍处于起步阶段。现在取得了迅速的进展,这促使我写了这篇文章。人类脑部疾病代表了正常范围之外的不同系统状态。许多不同不仅在功能上,而且在结构上,异常神经组织的形态形成了神经病理疾病分类的传统基础。然而,只有少数几个国家有神经病理学的医学专业,而且,考虑到新开发的用于研究脑部疾病的组织学工具的数量之多,显微镜下合格的手和眼睛的严重短缺是显而易见的。同样,在神经解剖学中,人类观察者不再有能力处理大量的连接组学数据。因此,有理由认为人工智能技术的进步,特别是全片图像(WSI)分析将极大地帮助神经病理实践。在本文中,我们讨论了对理解WSI分析很重要的机器学习(ML)技术,例如传统的ML和深度学习,介绍了最近开发的称为病理融合的神经病理学人工智能,并提出了在实现人工智能在数字神经病理学中的全部潜力之前必须克服的一些挑战的想法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial intelligence techniques for neuropathological diagnostics and research.

Artificial intelligence (AI) research began in theoretical neurophysiology, and the resulting classical paper on the McCulloch-Pitts mathematical neuron was written in a psychiatry department almost 80 years ago. However, the application of AI in digital neuropathology is still in its infancy. Rapid progress is now being made, which prompted this article. Human brain diseases represent distinct system states that fall outside the normal spectrum. Many differ not only in functional but also in structural terms, and the morphology of abnormal nervous tissue forms the traditional basis of neuropathological disease classifications. However, only a few countries have the medical specialty of neuropathology, and, given the sheer number of newly developed histological tools that can be applied to the study of brain diseases, a tremendous shortage of qualified hands and eyes at the microscope is obvious. Similarly, in neuroanatomy, human observers no longer have the capacity to process the vast amounts of connectomics data. Therefore, it is reasonable to assume that advances in AI technology and, especially, whole-slide image (WSI) analysis will greatly aid neuropathological practice. In this paper, we discuss machine learning (ML) techniques that are important for understanding WSI analysis, such as traditional ML and deep learning, introduce a recently developed neuropathological AI termed PathoFusion, and present thoughts on some of the challenges that must be overcome before the full potential of AI in digital neuropathology can be realized.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuropathology
Neuropathology 医学-病理学
CiteScore
4.10
自引率
4.30%
发文量
105
审稿时长
6-12 weeks
期刊介绍: Neuropathology is an international journal sponsored by the Japanese Society of Neuropathology and publishes peer-reviewed original papers dealing with all aspects of human and experimental neuropathology and related fields of research. The Journal aims to promote the international exchange of results and encourages authors from all countries to submit papers in the following categories: Original Articles, Case Reports, Short Communications, Occasional Reviews, Editorials and Letters to the Editor. All articles are peer-reviewed by at least two researchers expert in the field of the submitted paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信