TextConvoNet:一种基于卷积神经网络的文本分类架构。

Sanskar Soni, Satyendra Singh Chouhan, Santosh Singh Rathore
{"title":"TextConvoNet:一种基于卷积神经网络的文本分类架构。","authors":"Sanskar Soni,&nbsp;Satyendra Singh Chouhan,&nbsp;Santosh Singh Rathore","doi":"10.1007/s10489-022-04221-9","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents, <i>TextConvoNet</i>, a novel Convolutional Neural Network (CNN) based architecture for binary and multi-class text classification problems. Most of the existing CNN-based models use one-dimensional convolving filters, where each filter specializes in extracting <i>n-grams</i> features of a particular input word embeddings (Sentence Matrix). These features can be termed as intra-sentence <i>n-gram</i> features. To the best of our knowledge, all the existing CNN models for text classification are based on the aforementioned concept. The presented <i>TextConvoNet</i> not only extracts the intra-sentence <i>n-gram</i> features but also captures the inter-sentence <i>n-gram</i> features in input text data. It uses an alternative approach for input matrix representation and applies a two-dimensional multi-scale convolutional operation on the input. We perform an experimental study on five binary and multi-class classification datasets and evaluate the performance of the <i>TextConvoNet</i> for text classification. The results are evaluated using eight performance measures, accuracy, precision, recall, f1-score, specificity, gmean1, gmean2, and Mathews correlation coefficient (MCC). Furthermore, we extensively compared presented <i>TextConvoNet</i> with machine learning, deep learning, and attention-based models. The experimental results evidenced that the presented <i>TextConvoNet</i> outperformed and yielded better performance than the other used models for text classification purposes.</p>","PeriodicalId":72260,"journal":{"name":"Applied intelligence (Dordrecht, Netherlands)","volume":"53 11","pages":"14249-14268"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9589611/pdf/","citationCount":"15","resultStr":"{\"title\":\"<i>TextConvoNet</i>: a convolutional neural network based architecture for text classification.\",\"authors\":\"Sanskar Soni,&nbsp;Satyendra Singh Chouhan,&nbsp;Santosh Singh Rathore\",\"doi\":\"10.1007/s10489-022-04221-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents, <i>TextConvoNet</i>, a novel Convolutional Neural Network (CNN) based architecture for binary and multi-class text classification problems. Most of the existing CNN-based models use one-dimensional convolving filters, where each filter specializes in extracting <i>n-grams</i> features of a particular input word embeddings (Sentence Matrix). These features can be termed as intra-sentence <i>n-gram</i> features. To the best of our knowledge, all the existing CNN models for text classification are based on the aforementioned concept. The presented <i>TextConvoNet</i> not only extracts the intra-sentence <i>n-gram</i> features but also captures the inter-sentence <i>n-gram</i> features in input text data. It uses an alternative approach for input matrix representation and applies a two-dimensional multi-scale convolutional operation on the input. We perform an experimental study on five binary and multi-class classification datasets and evaluate the performance of the <i>TextConvoNet</i> for text classification. The results are evaluated using eight performance measures, accuracy, precision, recall, f1-score, specificity, gmean1, gmean2, and Mathews correlation coefficient (MCC). Furthermore, we extensively compared presented <i>TextConvoNet</i> with machine learning, deep learning, and attention-based models. The experimental results evidenced that the presented <i>TextConvoNet</i> outperformed and yielded better performance than the other used models for text classification purposes.</p>\",\"PeriodicalId\":72260,\"journal\":{\"name\":\"Applied intelligence (Dordrecht, Netherlands)\",\"volume\":\"53 11\",\"pages\":\"14249-14268\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9589611/pdf/\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied intelligence (Dordrecht, Netherlands)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10489-022-04221-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/10/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied intelligence (Dordrecht, Netherlands)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10489-022-04221-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文提出了一种新的基于卷积神经网络(CNN)的结构,TextConvoNet,用于解决二进制和多类文本分类问题。大多数现有的基于CNN的模型使用一维卷积滤波器,其中每个滤波器专门提取特定输入词嵌入的n-gram特征(句子矩阵)。这些特征可以称为句内n-gram特征。据我们所知,所有现有的用于文本分类的CNN模型都是基于上述概念的。所提出的TextConvoNet不仅提取了输入文本数据中的句内n-gram特征,而且捕获了句间n-gram特征。它使用输入矩阵表示的替代方法,并对输入应用二维多尺度卷积运算。我们在五个二进制和多类分类数据集上进行了实验研究,并评估了TextConvoNet在文本分类方面的性能。使用八项性能指标评估结果,准确性、精密度、召回率、f1评分、特异性、gmean1、gmean2和Mathews相关系数(MCC)。此外,我们将所提出的TextConvoNet与机器学习、深度学习和基于注意力的模型进行了广泛的比较。实验结果表明,与其他用于文本分类的模型相比,所提出的TextConvoNet表现出色,性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

<i>TextConvoNet</i>: a convolutional neural network based architecture for text classification.

<i>TextConvoNet</i>: a convolutional neural network based architecture for text classification.

<i>TextConvoNet</i>: a convolutional neural network based architecture for text classification.

TextConvoNet: a convolutional neural network based architecture for text classification.

This paper presents, TextConvoNet, a novel Convolutional Neural Network (CNN) based architecture for binary and multi-class text classification problems. Most of the existing CNN-based models use one-dimensional convolving filters, where each filter specializes in extracting n-grams features of a particular input word embeddings (Sentence Matrix). These features can be termed as intra-sentence n-gram features. To the best of our knowledge, all the existing CNN models for text classification are based on the aforementioned concept. The presented TextConvoNet not only extracts the intra-sentence n-gram features but also captures the inter-sentence n-gram features in input text data. It uses an alternative approach for input matrix representation and applies a two-dimensional multi-scale convolutional operation on the input. We perform an experimental study on five binary and multi-class classification datasets and evaluate the performance of the TextConvoNet for text classification. The results are evaluated using eight performance measures, accuracy, precision, recall, f1-score, specificity, gmean1, gmean2, and Mathews correlation coefficient (MCC). Furthermore, we extensively compared presented TextConvoNet with machine learning, deep learning, and attention-based models. The experimental results evidenced that the presented TextConvoNet outperformed and yielded better performance than the other used models for text classification purposes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信