{"title":"一类丢番图级数的近似函数方程。","authors":"Fernando Chamizo, Bruno Martin","doi":"10.1007/s00605-023-01859-6","DOIUrl":null,"url":null,"abstract":"<p><p>We prove that a family of Diophantine series satisfies an approximate functional equation. It generalizes a result by Rivoal and Roques and proves an extended version of a conjecture posed in their paper. We also characterize the convergence points.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363075/pdf/","citationCount":"1","resultStr":"{\"title\":\"The approximate functional equation of some Diophantine series.\",\"authors\":\"Fernando Chamizo, Bruno Martin\",\"doi\":\"10.1007/s00605-023-01859-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We prove that a family of Diophantine series satisfies an approximate functional equation. It generalizes a result by Rivoal and Roques and proves an extended version of a conjecture posed in their paper. We also characterize the convergence points.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363075/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-023-01859-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00605-023-01859-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
The approximate functional equation of some Diophantine series.
We prove that a family of Diophantine series satisfies an approximate functional equation. It generalizes a result by Rivoal and Roques and proves an extended version of a conjecture posed in their paper. We also characterize the convergence points.