一类丢番图级数的近似函数方程。

Pub Date : 2023-01-01 Epub Date: 2023-05-05 DOI:10.1007/s00605-023-01859-6
Fernando Chamizo, Bruno Martin
{"title":"一类丢番图级数的近似函数方程。","authors":"Fernando Chamizo,&nbsp;Bruno Martin","doi":"10.1007/s00605-023-01859-6","DOIUrl":null,"url":null,"abstract":"<p><p>We prove that a family of Diophantine series satisfies an approximate functional equation. It generalizes a result by Rivoal and Roques and proves an extended version of a conjecture posed in their paper. We also characterize the convergence points.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363075/pdf/","citationCount":"1","resultStr":"{\"title\":\"The approximate functional equation of some Diophantine series.\",\"authors\":\"Fernando Chamizo,&nbsp;Bruno Martin\",\"doi\":\"10.1007/s00605-023-01859-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We prove that a family of Diophantine series satisfies an approximate functional equation. It generalizes a result by Rivoal and Roques and proves an extended version of a conjecture posed in their paper. We also characterize the convergence points.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363075/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-023-01859-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00605-023-01859-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们证明了丢番图级数族满足一个近似函数方程。它推广了Rivoal和Roques的一个结果,并证明了他们提出的一个猜想的一个扩展版本。我们还刻画了收敛点的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The approximate functional equation of some Diophantine series.

We prove that a family of Diophantine series satisfies an approximate functional equation. It generalizes a result by Rivoal and Roques and proves an extended version of a conjecture posed in their paper. We also characterize the convergence points.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信