Disi Chen , Xiaoyang Ai , Yang Li , Yue Li , Yunfan Ao , Jun Rong , Guopan Li
{"title":"Cu/Zn-SOD和Mn-SOD对UVC诱导的NIH/3T3细胞和小鼠皮肤损伤的保护作用","authors":"Disi Chen , Xiaoyang Ai , Yang Li , Yue Li , Yunfan Ao , Jun Rong , Guopan Li","doi":"10.1016/j.acthis.2023.152030","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span><span>Superoxide dismutase (SOD) is an antioxidant enzyme with multiple metal cofactors that can specifically clear </span>reactive oxygen species (ROS), which plays an important role in a variety of ultraviolet-induced lesions. Therefore, SOD has the anti-ultraviolet radiation effect. The objective of this study was to compare the differences in the anti-ultraviolet radiation effect of SOD with distinct metal cofactors: Cu/Zn-SOD and Mn-SOD. SOD was first purified using </span>hydrophobic interaction chromatography and ion-exchange chromatography. Second, the Methylthiazolyldiphenyl-tetrazolium bromide method and cell senescence kits were used to study the protective effect of SOD on ultraviolet-induced cell damage. Finally, the protective effect of SOD on ultraviolet -induced </span>skin damage was histopathologically evaluated, and the expression levels of </span>malondialdehyde<span><span> (MDA) and matrix metalloproteinases (MMPs) in tissues were detected. The results showed that Cu/Zn-SOD was superior to Mn-SOD in promoting </span>cell proliferation, alleviating cell damage, protecting skin structure, and regulating the expression levels of MDA and MMPs, and it has no side effects. In conclusion, Cu/Zn-SOD had a better anti-ultraviolet radiation effect than Mn-SOD, and it can be used in anti-aging and anti-ultraviolet skin-care products.</span></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Protective effects of Cu/Zn-SOD and Mn-SOD on UVC radiation-induced damage in NIH/3T3 cells and murine skin\",\"authors\":\"Disi Chen , Xiaoyang Ai , Yang Li , Yue Li , Yunfan Ao , Jun Rong , Guopan Li\",\"doi\":\"10.1016/j.acthis.2023.152030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span><span>Superoxide dismutase (SOD) is an antioxidant enzyme with multiple metal cofactors that can specifically clear </span>reactive oxygen species (ROS), which plays an important role in a variety of ultraviolet-induced lesions. Therefore, SOD has the anti-ultraviolet radiation effect. The objective of this study was to compare the differences in the anti-ultraviolet radiation effect of SOD with distinct metal cofactors: Cu/Zn-SOD and Mn-SOD. SOD was first purified using </span>hydrophobic interaction chromatography and ion-exchange chromatography. Second, the Methylthiazolyldiphenyl-tetrazolium bromide method and cell senescence kits were used to study the protective effect of SOD on ultraviolet-induced cell damage. Finally, the protective effect of SOD on ultraviolet -induced </span>skin damage was histopathologically evaluated, and the expression levels of </span>malondialdehyde<span><span> (MDA) and matrix metalloproteinases (MMPs) in tissues were detected. The results showed that Cu/Zn-SOD was superior to Mn-SOD in promoting </span>cell proliferation, alleviating cell damage, protecting skin structure, and regulating the expression levels of MDA and MMPs, and it has no side effects. In conclusion, Cu/Zn-SOD had a better anti-ultraviolet radiation effect than Mn-SOD, and it can be used in anti-aging and anti-ultraviolet skin-care products.</span></p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0065128123000363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0065128123000363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Protective effects of Cu/Zn-SOD and Mn-SOD on UVC radiation-induced damage in NIH/3T3 cells and murine skin
Superoxide dismutase (SOD) is an antioxidant enzyme with multiple metal cofactors that can specifically clear reactive oxygen species (ROS), which plays an important role in a variety of ultraviolet-induced lesions. Therefore, SOD has the anti-ultraviolet radiation effect. The objective of this study was to compare the differences in the anti-ultraviolet radiation effect of SOD with distinct metal cofactors: Cu/Zn-SOD and Mn-SOD. SOD was first purified using hydrophobic interaction chromatography and ion-exchange chromatography. Second, the Methylthiazolyldiphenyl-tetrazolium bromide method and cell senescence kits were used to study the protective effect of SOD on ultraviolet-induced cell damage. Finally, the protective effect of SOD on ultraviolet -induced skin damage was histopathologically evaluated, and the expression levels of malondialdehyde (MDA) and matrix metalloproteinases (MMPs) in tissues were detected. The results showed that Cu/Zn-SOD was superior to Mn-SOD in promoting cell proliferation, alleviating cell damage, protecting skin structure, and regulating the expression levels of MDA and MMPs, and it has no side effects. In conclusion, Cu/Zn-SOD had a better anti-ultraviolet radiation effect than Mn-SOD, and it can be used in anti-aging and anti-ultraviolet skin-care products.