Disi Chen , Xiaoyang Ai , Yang Li , Yue Li , Yunfan Ao , Jun Rong , Guopan Li
{"title":"Cu/Zn-SOD和Mn-SOD对UVC诱导的NIH/3T3细胞和小鼠皮肤损伤的保护作用","authors":"Disi Chen , Xiaoyang Ai , Yang Li , Yue Li , Yunfan Ao , Jun Rong , Guopan Li","doi":"10.1016/j.acthis.2023.152030","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span><span>Superoxide dismutase (SOD) is an antioxidant enzyme with multiple metal cofactors that can specifically clear </span>reactive oxygen species (ROS), which plays an important role in a variety of ultraviolet-induced lesions. Therefore, SOD has the anti-ultraviolet radiation effect. The objective of this study was to compare the differences in the anti-ultraviolet radiation effect of SOD with distinct metal cofactors: Cu/Zn-SOD and Mn-SOD. SOD was first purified using </span>hydrophobic interaction chromatography and ion-exchange chromatography. Second, the Methylthiazolyldiphenyl-tetrazolium bromide method and cell senescence kits were used to study the protective effect of SOD on ultraviolet-induced cell damage. Finally, the protective effect of SOD on ultraviolet -induced </span>skin damage was histopathologically evaluated, and the expression levels of </span>malondialdehyde<span><span> (MDA) and matrix metalloproteinases (MMPs) in tissues were detected. The results showed that Cu/Zn-SOD was superior to Mn-SOD in promoting </span>cell proliferation, alleviating cell damage, protecting skin structure, and regulating the expression levels of MDA and MMPs, and it has no side effects. In conclusion, Cu/Zn-SOD had a better anti-ultraviolet radiation effect than Mn-SOD, and it can be used in anti-aging and anti-ultraviolet skin-care products.</span></p></div>","PeriodicalId":6961,"journal":{"name":"Acta histochemica","volume":"125 4","pages":"Article 152030"},"PeriodicalIF":2.3000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Protective effects of Cu/Zn-SOD and Mn-SOD on UVC radiation-induced damage in NIH/3T3 cells and murine skin\",\"authors\":\"Disi Chen , Xiaoyang Ai , Yang Li , Yue Li , Yunfan Ao , Jun Rong , Guopan Li\",\"doi\":\"10.1016/j.acthis.2023.152030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span><span>Superoxide dismutase (SOD) is an antioxidant enzyme with multiple metal cofactors that can specifically clear </span>reactive oxygen species (ROS), which plays an important role in a variety of ultraviolet-induced lesions. Therefore, SOD has the anti-ultraviolet radiation effect. The objective of this study was to compare the differences in the anti-ultraviolet radiation effect of SOD with distinct metal cofactors: Cu/Zn-SOD and Mn-SOD. SOD was first purified using </span>hydrophobic interaction chromatography and ion-exchange chromatography. Second, the Methylthiazolyldiphenyl-tetrazolium bromide method and cell senescence kits were used to study the protective effect of SOD on ultraviolet-induced cell damage. Finally, the protective effect of SOD on ultraviolet -induced </span>skin damage was histopathologically evaluated, and the expression levels of </span>malondialdehyde<span><span> (MDA) and matrix metalloproteinases (MMPs) in tissues were detected. The results showed that Cu/Zn-SOD was superior to Mn-SOD in promoting </span>cell proliferation, alleviating cell damage, protecting skin structure, and regulating the expression levels of MDA and MMPs, and it has no side effects. In conclusion, Cu/Zn-SOD had a better anti-ultraviolet radiation effect than Mn-SOD, and it can be used in anti-aging and anti-ultraviolet skin-care products.</span></p></div>\",\"PeriodicalId\":6961,\"journal\":{\"name\":\"Acta histochemica\",\"volume\":\"125 4\",\"pages\":\"Article 152030\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta histochemica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0065128123000363\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta histochemica","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0065128123000363","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Protective effects of Cu/Zn-SOD and Mn-SOD on UVC radiation-induced damage in NIH/3T3 cells and murine skin
Superoxide dismutase (SOD) is an antioxidant enzyme with multiple metal cofactors that can specifically clear reactive oxygen species (ROS), which plays an important role in a variety of ultraviolet-induced lesions. Therefore, SOD has the anti-ultraviolet radiation effect. The objective of this study was to compare the differences in the anti-ultraviolet radiation effect of SOD with distinct metal cofactors: Cu/Zn-SOD and Mn-SOD. SOD was first purified using hydrophobic interaction chromatography and ion-exchange chromatography. Second, the Methylthiazolyldiphenyl-tetrazolium bromide method and cell senescence kits were used to study the protective effect of SOD on ultraviolet-induced cell damage. Finally, the protective effect of SOD on ultraviolet -induced skin damage was histopathologically evaluated, and the expression levels of malondialdehyde (MDA) and matrix metalloproteinases (MMPs) in tissues were detected. The results showed that Cu/Zn-SOD was superior to Mn-SOD in promoting cell proliferation, alleviating cell damage, protecting skin structure, and regulating the expression levels of MDA and MMPs, and it has no side effects. In conclusion, Cu/Zn-SOD had a better anti-ultraviolet radiation effect than Mn-SOD, and it can be used in anti-aging and anti-ultraviolet skin-care products.
期刊介绍:
Acta histochemica, a journal of structural biochemistry of cells and tissues, publishes original research articles, short communications, reviews, letters to the editor, meeting reports and abstracts of meetings. The aim of the journal is to provide a forum for the cytochemical and histochemical research community in the life sciences, including cell biology, biotechnology, neurobiology, immunobiology, pathology, pharmacology, botany, zoology and environmental and toxicological research. The journal focuses on new developments in cytochemistry and histochemistry and their applications. Manuscripts reporting on studies of living cells and tissues are particularly welcome. Understanding the complexity of cells and tissues, i.e. their biocomplexity and biodiversity, is a major goal of the journal and reports on this topic are especially encouraged. Original research articles, short communications and reviews that report on new developments in cytochemistry and histochemistry are welcomed, especially when molecular biology is combined with the use of advanced microscopical techniques including image analysis and cytometry. Letters to the editor should comment or interpret previously published articles in the journal to trigger scientific discussions. Meeting reports are considered to be very important publications in the journal because they are excellent opportunities to present state-of-the-art overviews of fields in research where the developments are fast and hard to follow. Authors of meeting reports should consult the editors before writing a report. The editorial policy of the editors and the editorial board is rapid publication. Once a manuscript is received by one of the editors, an editorial decision about acceptance, revision or rejection will be taken within a month. It is the aim of the publishers to have a manuscript published within three months after the manuscript has been accepted