{"title":"对极端不平衡病例-对照关联研究的多种表型进行联合分析","authors":"Hongjing Xie, Xuewei Cao, Shuanglin Zhang, Qiuying Sha","doi":"10.1002/gepi.22513","DOIUrl":null,"url":null,"abstract":"<p>In genome-wide association studies (GWAS) for thousands of phenotypes in biobanks, most binary phenotypes have substantially fewer cases than controls. Many widely used approaches for joint analysis of multiple phenotypes produce inflated type I error rates for such extremely unbalanced case-control phenotypes. In this research, we develop a method to jointly analyze multiple unbalanced case-control phenotypes to circumvent this issue. We first group multiple phenotypes into different clusters based on a hierarchical clustering method, then we merge phenotypes in each cluster into a single phenotype. In each cluster, we use the saddlepoint approximation to estimate the <i>p</i> value of an association test between the merged phenotype and a single nucleotide polymorphism (SNP) which eliminates the issue of inflated type I error rate of the test for extremely unbalanced case-control phenotypes. Finally, we use the Cauchy combination method to obtain an integrated <i>p</i> value for all clusters to test the association between multiple phenotypes and a SNP. We use extensive simulation studies to evaluate the performance of the proposed approach. The results show that the proposed approach can control type I error rate very well and is more powerful than other available methods. We also apply the proposed approach to phenotypes in category IX (diseases of the circulatory system) in the UK Biobank. We find that the proposed approach can identify more significant SNPs than the other viable methods we compared with.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"47 2","pages":"185-197"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Joint analysis of multiple phenotypes for extremely unbalanced case-control association studies\",\"authors\":\"Hongjing Xie, Xuewei Cao, Shuanglin Zhang, Qiuying Sha\",\"doi\":\"10.1002/gepi.22513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In genome-wide association studies (GWAS) for thousands of phenotypes in biobanks, most binary phenotypes have substantially fewer cases than controls. Many widely used approaches for joint analysis of multiple phenotypes produce inflated type I error rates for such extremely unbalanced case-control phenotypes. In this research, we develop a method to jointly analyze multiple unbalanced case-control phenotypes to circumvent this issue. We first group multiple phenotypes into different clusters based on a hierarchical clustering method, then we merge phenotypes in each cluster into a single phenotype. In each cluster, we use the saddlepoint approximation to estimate the <i>p</i> value of an association test between the merged phenotype and a single nucleotide polymorphism (SNP) which eliminates the issue of inflated type I error rate of the test for extremely unbalanced case-control phenotypes. Finally, we use the Cauchy combination method to obtain an integrated <i>p</i> value for all clusters to test the association between multiple phenotypes and a SNP. We use extensive simulation studies to evaluate the performance of the proposed approach. The results show that the proposed approach can control type I error rate very well and is more powerful than other available methods. We also apply the proposed approach to phenotypes in category IX (diseases of the circulatory system) in the UK Biobank. We find that the proposed approach can identify more significant SNPs than the other viable methods we compared with.</p>\",\"PeriodicalId\":12710,\"journal\":{\"name\":\"Genetic Epidemiology\",\"volume\":\"47 2\",\"pages\":\"185-197\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetic Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22513\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22513","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Joint analysis of multiple phenotypes for extremely unbalanced case-control association studies
In genome-wide association studies (GWAS) for thousands of phenotypes in biobanks, most binary phenotypes have substantially fewer cases than controls. Many widely used approaches for joint analysis of multiple phenotypes produce inflated type I error rates for such extremely unbalanced case-control phenotypes. In this research, we develop a method to jointly analyze multiple unbalanced case-control phenotypes to circumvent this issue. We first group multiple phenotypes into different clusters based on a hierarchical clustering method, then we merge phenotypes in each cluster into a single phenotype. In each cluster, we use the saddlepoint approximation to estimate the p value of an association test between the merged phenotype and a single nucleotide polymorphism (SNP) which eliminates the issue of inflated type I error rate of the test for extremely unbalanced case-control phenotypes. Finally, we use the Cauchy combination method to obtain an integrated p value for all clusters to test the association between multiple phenotypes and a SNP. We use extensive simulation studies to evaluate the performance of the proposed approach. The results show that the proposed approach can control type I error rate very well and is more powerful than other available methods. We also apply the proposed approach to phenotypes in category IX (diseases of the circulatory system) in the UK Biobank. We find that the proposed approach can identify more significant SNPs than the other viable methods we compared with.
期刊介绍:
Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations.
Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.