Rui Li, Xin Teng, Haicheng Zhu, Tongliang Han, Qingwei Liu
{"title":"MiR-4500调控PLXNC1抑制甲状腺乳头状癌进展","authors":"Rui Li, Xin Teng, Haicheng Zhu, Tongliang Han, Qingwei Liu","doi":"10.1007/s12672-019-00366-1","DOIUrl":null,"url":null,"abstract":"<p><p>Although most patients with papillary thyroid cancer (PTC) are curable, there are still a few patients showing poor outcomes and increased risk of secondary cancers after therapies. In this study, we aimed to investigate the correlation between miR-4500 and PTC and to explore its molecular functions. A total of 50 patients were included, and sonography and histological examinations were used for diagnosis. Quantitative real-time polymerase chain reaction (qRT-PCR) was applied for detection of mRNA levels while Western blotting was used for measuring protein expression. Cell proliferation was tested using CCK-8 and colony formation assays. Caspase-3 activity and nucleosomal fragmentation assays were employed to test cell apoptosis. Cell invasive ability was measured using transwell assay. MiR-4500 target was identified using luciferase assay and RNA pull-down assay. MiR-4500 expression was significantly decreased in five PTC cell lines compared with Nthy-ori 3-1 cells and in PTC tissues compared with adjacent normal thyroid tissues, respectively. Decreased expression of miR-4500 showed lower survival rate, higher cancer stage, and lymphatic metastasis. Therefore, our results implied that miR-4500 could serve as a potential biomarker for PTC prognosis. Overexpression of miR-4500 repressed colony formation, proliferation, and invasiveness of PTC cells whereas increased cell apoptosis. We identified that PLXNC1 was a direct target of miR-4500. PLXNC1 knockdown showed similar effects on cell viability, colony formation, and cell apoptosis as overexpression of miR-4500 in PTC cells. In conclusion, miR-4500 inhibits the malignant transformation of PTC cells by directly targeting and repressing PLXNC1.</p>","PeriodicalId":13060,"journal":{"name":"Hormones & Cancer","volume":"10 4-6","pages":"150-160"},"PeriodicalIF":3.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12672-019-00366-1","citationCount":"21","resultStr":"{\"title\":\"MiR-4500 Regulates PLXNC1 and Inhibits Papillary Thyroid Cancer Progression.\",\"authors\":\"Rui Li, Xin Teng, Haicheng Zhu, Tongliang Han, Qingwei Liu\",\"doi\":\"10.1007/s12672-019-00366-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although most patients with papillary thyroid cancer (PTC) are curable, there are still a few patients showing poor outcomes and increased risk of secondary cancers after therapies. In this study, we aimed to investigate the correlation between miR-4500 and PTC and to explore its molecular functions. A total of 50 patients were included, and sonography and histological examinations were used for diagnosis. Quantitative real-time polymerase chain reaction (qRT-PCR) was applied for detection of mRNA levels while Western blotting was used for measuring protein expression. Cell proliferation was tested using CCK-8 and colony formation assays. Caspase-3 activity and nucleosomal fragmentation assays were employed to test cell apoptosis. Cell invasive ability was measured using transwell assay. MiR-4500 target was identified using luciferase assay and RNA pull-down assay. MiR-4500 expression was significantly decreased in five PTC cell lines compared with Nthy-ori 3-1 cells and in PTC tissues compared with adjacent normal thyroid tissues, respectively. Decreased expression of miR-4500 showed lower survival rate, higher cancer stage, and lymphatic metastasis. Therefore, our results implied that miR-4500 could serve as a potential biomarker for PTC prognosis. Overexpression of miR-4500 repressed colony formation, proliferation, and invasiveness of PTC cells whereas increased cell apoptosis. We identified that PLXNC1 was a direct target of miR-4500. PLXNC1 knockdown showed similar effects on cell viability, colony formation, and cell apoptosis as overexpression of miR-4500 in PTC cells. In conclusion, miR-4500 inhibits the malignant transformation of PTC cells by directly targeting and repressing PLXNC1.</p>\",\"PeriodicalId\":13060,\"journal\":{\"name\":\"Hormones & Cancer\",\"volume\":\"10 4-6\",\"pages\":\"150-160\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12672-019-00366-1\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hormones & Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12672-019-00366-1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hormones & Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12672-019-00366-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
MiR-4500 Regulates PLXNC1 and Inhibits Papillary Thyroid Cancer Progression.
Although most patients with papillary thyroid cancer (PTC) are curable, there are still a few patients showing poor outcomes and increased risk of secondary cancers after therapies. In this study, we aimed to investigate the correlation between miR-4500 and PTC and to explore its molecular functions. A total of 50 patients were included, and sonography and histological examinations were used for diagnosis. Quantitative real-time polymerase chain reaction (qRT-PCR) was applied for detection of mRNA levels while Western blotting was used for measuring protein expression. Cell proliferation was tested using CCK-8 and colony formation assays. Caspase-3 activity and nucleosomal fragmentation assays were employed to test cell apoptosis. Cell invasive ability was measured using transwell assay. MiR-4500 target was identified using luciferase assay and RNA pull-down assay. MiR-4500 expression was significantly decreased in five PTC cell lines compared with Nthy-ori 3-1 cells and in PTC tissues compared with adjacent normal thyroid tissues, respectively. Decreased expression of miR-4500 showed lower survival rate, higher cancer stage, and lymphatic metastasis. Therefore, our results implied that miR-4500 could serve as a potential biomarker for PTC prognosis. Overexpression of miR-4500 repressed colony formation, proliferation, and invasiveness of PTC cells whereas increased cell apoptosis. We identified that PLXNC1 was a direct target of miR-4500. PLXNC1 knockdown showed similar effects on cell viability, colony formation, and cell apoptosis as overexpression of miR-4500 in PTC cells. In conclusion, miR-4500 inhibits the malignant transformation of PTC cells by directly targeting and repressing PLXNC1.
期刊介绍:
Hormones and Cancer is a unique multidisciplinary translational journal featuring basic science, pre-clinical, epidemiological, and clinical research papers. It covers all aspects of the interface of Endocrinology and Oncology. Thus, the journal covers two main areas of research: Endocrine tumors (benign & malignant tumors of hormone secreting endocrine organs) and the effects of hormones on any type of tumor. We welcome all types of studies related to these fields, but our particular attention is on translational aspects of research. In addition to basic, pre-clinical, and epidemiological studies, we encourage submission of clinical studies including those that comprise small series of tumors in rare endocrine neoplasias and/or negative or confirmatory results provided that they significantly enhance our understanding of endocrine aspects of oncology. The journal does not publish case studies.