糖尿病高血糖期间血管CaV1.2通道调节的机制。

Q1 Pharmacology, Toxicology and Pharmaceutics
Miguel Martín-Aragón Baudel, Junyoung Hong, Johannes W Hell, Madeline Nieves-Cintrón, Manuel F Navedo
{"title":"糖尿病高血糖期间血管CaV1.2通道调节的机制。","authors":"Miguel Martín-Aragón Baudel,&nbsp;Junyoung Hong,&nbsp;Johannes W Hell,&nbsp;Madeline Nieves-Cintrón,&nbsp;Manuel F Navedo","doi":"10.1007/164_2022_628","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes is a leading cause of disability and mortality worldwide. A major underlying factor in diabetes is the excessive glucose levels in the bloodstream (e.g., hyperglycemia). Vascular complications directly result from this metabolic abnormality, leading to disabling and life-threatening conditions. Dysfunction of vascular smooth muscle cells is a well-recognized factor mediating vascular complications during diabetic hyperglycemia. The function of vascular smooth muscle cells is exquisitely controlled by different ion channels. Among the ion channels, the L-type Ca<sub>V</sub>1.2 channel plays a key role as it is the main Ca<sup>2+</sup> entry pathway regulating vascular smooth muscle contractile state. The activity of Ca<sub>V</sub>1.2 channels in vascular smooth muscle is altered by diabetic hyperglycemia, which may contribute to vascular complications. In this chapter, we summarize the current understanding of the regulation of Ca<sub>V</sub>1.2 channels in vascular smooth muscle by different signaling pathways. We place special attention on the regulation of Ca<sub>V</sub>1.2 channel activity in vascular smooth muscle by a newly uncovered AKAP5/P2Y<sub>11</sub>/AC5/PKA/Ca<sub>V</sub>1.2 axis that is engaged during diabetic hyperglycemia. We further describe the pathophysiological implications of activation of this axis as it relates to myogenic tone and vascular reactivity and propose that this complex may be targeted for developing therapies to treat diabetic vascular complications.</p>","PeriodicalId":12859,"journal":{"name":"Handbook of experimental pharmacology","volume":"279 ","pages":"41-58"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mechanisms of Vascular Ca<sub>V</sub>1.2 Channel Regulation During Diabetic Hyperglycemia.\",\"authors\":\"Miguel Martín-Aragón Baudel,&nbsp;Junyoung Hong,&nbsp;Johannes W Hell,&nbsp;Madeline Nieves-Cintrón,&nbsp;Manuel F Navedo\",\"doi\":\"10.1007/164_2022_628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetes is a leading cause of disability and mortality worldwide. A major underlying factor in diabetes is the excessive glucose levels in the bloodstream (e.g., hyperglycemia). Vascular complications directly result from this metabolic abnormality, leading to disabling and life-threatening conditions. Dysfunction of vascular smooth muscle cells is a well-recognized factor mediating vascular complications during diabetic hyperglycemia. The function of vascular smooth muscle cells is exquisitely controlled by different ion channels. Among the ion channels, the L-type Ca<sub>V</sub>1.2 channel plays a key role as it is the main Ca<sup>2+</sup> entry pathway regulating vascular smooth muscle contractile state. The activity of Ca<sub>V</sub>1.2 channels in vascular smooth muscle is altered by diabetic hyperglycemia, which may contribute to vascular complications. In this chapter, we summarize the current understanding of the regulation of Ca<sub>V</sub>1.2 channels in vascular smooth muscle by different signaling pathways. We place special attention on the regulation of Ca<sub>V</sub>1.2 channel activity in vascular smooth muscle by a newly uncovered AKAP5/P2Y<sub>11</sub>/AC5/PKA/Ca<sub>V</sub>1.2 axis that is engaged during diabetic hyperglycemia. We further describe the pathophysiological implications of activation of this axis as it relates to myogenic tone and vascular reactivity and propose that this complex may be targeted for developing therapies to treat diabetic vascular complications.</p>\",\"PeriodicalId\":12859,\"journal\":{\"name\":\"Handbook of experimental pharmacology\",\"volume\":\"279 \",\"pages\":\"41-58\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Handbook of experimental pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/164_2022_628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of experimental pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/164_2022_628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 1

摘要

糖尿病是全世界致残和死亡的主要原因。糖尿病的一个主要潜在因素是血液中的葡萄糖水平过高(例如高血糖)。这种代谢异常直接导致血管并发症,导致致残和危及生命的情况。血管平滑肌细胞功能障碍是糖尿病高血糖期间介导血管并发症的公认因素。血管平滑肌细胞的功能受到不同离子通道的精细控制。在离子通道中,L型CaV1.2通道起着关键作用,因为它是调节血管平滑肌收缩状态的主要Ca2+进入途径。糖尿病高血糖会改变血管平滑肌中CaV1.2通道的活性,这可能会导致血管并发症。在本章中,我们总结了目前对血管平滑肌CaV1.2通道通过不同信号通路调节的理解。我们特别关注糖尿病高血糖期间参与的新发现的AKAP5/P2Y11/AC5/PKA/CaV1.2轴对血管平滑肌中CaV1.2通道活性的调节。我们进一步描述了该轴激活的病理生理学意义,因为它与肌源性张力和血管反应性有关,并提出该复合物可能用于开发治疗糖尿病血管并发症的疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanisms of Vascular CaV1.2 Channel Regulation During Diabetic Hyperglycemia.

Diabetes is a leading cause of disability and mortality worldwide. A major underlying factor in diabetes is the excessive glucose levels in the bloodstream (e.g., hyperglycemia). Vascular complications directly result from this metabolic abnormality, leading to disabling and life-threatening conditions. Dysfunction of vascular smooth muscle cells is a well-recognized factor mediating vascular complications during diabetic hyperglycemia. The function of vascular smooth muscle cells is exquisitely controlled by different ion channels. Among the ion channels, the L-type CaV1.2 channel plays a key role as it is the main Ca2+ entry pathway regulating vascular smooth muscle contractile state. The activity of CaV1.2 channels in vascular smooth muscle is altered by diabetic hyperglycemia, which may contribute to vascular complications. In this chapter, we summarize the current understanding of the regulation of CaV1.2 channels in vascular smooth muscle by different signaling pathways. We place special attention on the regulation of CaV1.2 channel activity in vascular smooth muscle by a newly uncovered AKAP5/P2Y11/AC5/PKA/CaV1.2 axis that is engaged during diabetic hyperglycemia. We further describe the pathophysiological implications of activation of this axis as it relates to myogenic tone and vascular reactivity and propose that this complex may be targeted for developing therapies to treat diabetic vascular complications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Handbook of experimental pharmacology
Handbook of experimental pharmacology Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (all)
CiteScore
5.20
自引率
0.00%
发文量
54
期刊介绍: The Handbook of Experimental Pharmacology is one of the most authoritative and influential book series in pharmacology. It provides critical and comprehensive discussions of the most significant areas of pharmacological research, written by leading international authorities. Each volume in the series represents the most informative and contemporary account of its subject available, making it an unrivalled reference source.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信