{"title":"连续小波变换与多元校正同时分光光度法测定制剂和生物样品中坦索罗辛和索利那新的比较研究。","authors":"Nazanin Ashrafi, Mahmoud Reza Sohrabi, Mandana Saber Tehrani","doi":"10.1093/jaoacint/qsad065","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Spectrophotometry alone is not applicable for the simultaneous determination of drugs in a multicomponent pharmaceutical formulation owing to their overlap.</p><p><strong>Objective: </strong>In this study, the combination of UV-Vis spectrophotometry and chemometric methods, including continuous wavelet transform (CWT) and partial least-squares (PLS) was presented for the simultaneous estimation of tamsulosin (TAM) and solifenacin (SOL) in synthetic mixtures, commercial formulations, and a biological sample.</p><p><strong>Methods: </strong>The simultaneous spectrophotometric determination of TAM and SOL in binary mixtures, a real sample, and a biological sample was performed by applying CWT and PLS approaches.</p><p><strong>Results: </strong>In the CWT method, two various wavelet families named Daubechies (db2) at wavelength 223 nm and Biorthogonal (bior1.3) at wavelength 227 nm based on the appropriate zero-crossing point were selected for TAM and SOL, respectively. The linear ranges of TAM and SOL were 0.25-4 μg/mL and 10-30 μg/mL, respectively. The LODs were 0.0459 μg/mL and 0.2085 μg/mL, while the LOQs were 0.3208 μg/mL and 0.6495 μg/mL for TAM and SOL, respectively. The average recovery values of 18 mixtures were 98.28% and 97.79% for TAM and SOL, respectively. Also, the root mean square error (RMSE) of both components was lower than 2.3. Based on the k-fold cross-validation in the PLS approach, the optimum number of components related to TAM and SOL were 9 and 5 with a mean square error prediction (MSEP) of 0.0153 and 0.0370, respectively. The mean recovery values of the test set were found to be 100.09% for TAM and 99.95% for SOL where RMSE values were 0.0064 and 0.0169 for TAM and SOL, respectively.</p><p><strong>Conclusion: </strong>Analysis of variance (ANOVA) was applied to the results of the real sample and there was no significant difference between the proposed methods and HPLC as a reference technique. The result obtained revealed that the proposed methods were found to be fast, facile, economical, and precise, and provide a suitable alternative to the HPLC technique for the concurrent determination of TAM and SOL in QC laboratories.</p><p><strong>Highlights: </strong>UV-Vis spectrophotometry combined with CWT and PLS was developed. Simultaneous analysis of TAM and SOL was performed using the proposed approaches. These methods were implemented on synthetic mixtures, commercial formulations, and a biological sample. ANOVA test was used to compare the suggested methods and the HPLC technique.</p>","PeriodicalId":15003,"journal":{"name":"Journal of AOAC International","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparative Study of Continuous Wavelet Transform and Multivariate Calibration for the Simultaneous Spectrophotometric Determination of Tamsulosin and Solifenacin in Pharmaceutical Formulation and Biological Sample.\",\"authors\":\"Nazanin Ashrafi, Mahmoud Reza Sohrabi, Mandana Saber Tehrani\",\"doi\":\"10.1093/jaoacint/qsad065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Spectrophotometry alone is not applicable for the simultaneous determination of drugs in a multicomponent pharmaceutical formulation owing to their overlap.</p><p><strong>Objective: </strong>In this study, the combination of UV-Vis spectrophotometry and chemometric methods, including continuous wavelet transform (CWT) and partial least-squares (PLS) was presented for the simultaneous estimation of tamsulosin (TAM) and solifenacin (SOL) in synthetic mixtures, commercial formulations, and a biological sample.</p><p><strong>Methods: </strong>The simultaneous spectrophotometric determination of TAM and SOL in binary mixtures, a real sample, and a biological sample was performed by applying CWT and PLS approaches.</p><p><strong>Results: </strong>In the CWT method, two various wavelet families named Daubechies (db2) at wavelength 223 nm and Biorthogonal (bior1.3) at wavelength 227 nm based on the appropriate zero-crossing point were selected for TAM and SOL, respectively. The linear ranges of TAM and SOL were 0.25-4 μg/mL and 10-30 μg/mL, respectively. The LODs were 0.0459 μg/mL and 0.2085 μg/mL, while the LOQs were 0.3208 μg/mL and 0.6495 μg/mL for TAM and SOL, respectively. The average recovery values of 18 mixtures were 98.28% and 97.79% for TAM and SOL, respectively. Also, the root mean square error (RMSE) of both components was lower than 2.3. Based on the k-fold cross-validation in the PLS approach, the optimum number of components related to TAM and SOL were 9 and 5 with a mean square error prediction (MSEP) of 0.0153 and 0.0370, respectively. The mean recovery values of the test set were found to be 100.09% for TAM and 99.95% for SOL where RMSE values were 0.0064 and 0.0169 for TAM and SOL, respectively.</p><p><strong>Conclusion: </strong>Analysis of variance (ANOVA) was applied to the results of the real sample and there was no significant difference between the proposed methods and HPLC as a reference technique. The result obtained revealed that the proposed methods were found to be fast, facile, economical, and precise, and provide a suitable alternative to the HPLC technique for the concurrent determination of TAM and SOL in QC laboratories.</p><p><strong>Highlights: </strong>UV-Vis spectrophotometry combined with CWT and PLS was developed. Simultaneous analysis of TAM and SOL was performed using the proposed approaches. These methods were implemented on synthetic mixtures, commercial formulations, and a biological sample. ANOVA test was used to compare the suggested methods and the HPLC technique.</p>\",\"PeriodicalId\":15003,\"journal\":{\"name\":\"Journal of AOAC International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of AOAC International\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/jaoacint/qsad065\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of AOAC International","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/jaoacint/qsad065","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Comparative Study of Continuous Wavelet Transform and Multivariate Calibration for the Simultaneous Spectrophotometric Determination of Tamsulosin and Solifenacin in Pharmaceutical Formulation and Biological Sample.
Background: Spectrophotometry alone is not applicable for the simultaneous determination of drugs in a multicomponent pharmaceutical formulation owing to their overlap.
Objective: In this study, the combination of UV-Vis spectrophotometry and chemometric methods, including continuous wavelet transform (CWT) and partial least-squares (PLS) was presented for the simultaneous estimation of tamsulosin (TAM) and solifenacin (SOL) in synthetic mixtures, commercial formulations, and a biological sample.
Methods: The simultaneous spectrophotometric determination of TAM and SOL in binary mixtures, a real sample, and a biological sample was performed by applying CWT and PLS approaches.
Results: In the CWT method, two various wavelet families named Daubechies (db2) at wavelength 223 nm and Biorthogonal (bior1.3) at wavelength 227 nm based on the appropriate zero-crossing point were selected for TAM and SOL, respectively. The linear ranges of TAM and SOL were 0.25-4 μg/mL and 10-30 μg/mL, respectively. The LODs were 0.0459 μg/mL and 0.2085 μg/mL, while the LOQs were 0.3208 μg/mL and 0.6495 μg/mL for TAM and SOL, respectively. The average recovery values of 18 mixtures were 98.28% and 97.79% for TAM and SOL, respectively. Also, the root mean square error (RMSE) of both components was lower than 2.3. Based on the k-fold cross-validation in the PLS approach, the optimum number of components related to TAM and SOL were 9 and 5 with a mean square error prediction (MSEP) of 0.0153 and 0.0370, respectively. The mean recovery values of the test set were found to be 100.09% for TAM and 99.95% for SOL where RMSE values were 0.0064 and 0.0169 for TAM and SOL, respectively.
Conclusion: Analysis of variance (ANOVA) was applied to the results of the real sample and there was no significant difference between the proposed methods and HPLC as a reference technique. The result obtained revealed that the proposed methods were found to be fast, facile, economical, and precise, and provide a suitable alternative to the HPLC technique for the concurrent determination of TAM and SOL in QC laboratories.
Highlights: UV-Vis spectrophotometry combined with CWT and PLS was developed. Simultaneous analysis of TAM and SOL was performed using the proposed approaches. These methods were implemented on synthetic mixtures, commercial formulations, and a biological sample. ANOVA test was used to compare the suggested methods and the HPLC technique.
期刊介绍:
The Journal of AOAC INTERNATIONAL publishes the latest in basic and applied research in analytical sciences related to foods, drugs, agriculture, the environment, and more. The Journal is the method researchers'' forum for exchanging information and keeping informed of new technology and techniques pertinent to regulatory agencies and regulated industries.