PCK1是肾小管细胞代谢和线粒体功能的关键调节因子。

IF 3.7 2区 医学 Q1 PHYSIOLOGY
Thomas Verissimo, Delal Dalga, Grégoire Arnoux, Imene Sakhi, Anna Faivre, Hannah Auwerx, Soline Bourgeois, Deborah Paolucci, Quentin Gex, Joseph M Rutkowski, David Legouis, Carsten A Wagner, Andrew M Hall, Sophie de Seigneux
{"title":"PCK1是肾小管细胞代谢和线粒体功能的关键调节因子。","authors":"Thomas Verissimo, Delal Dalga, Grégoire Arnoux, Imene Sakhi, Anna Faivre, Hannah Auwerx, Soline Bourgeois, Deborah Paolucci, Quentin Gex, Joseph M Rutkowski, David Legouis, Carsten A Wagner, Andrew M Hall, Sophie de Seigneux","doi":"10.1152/ajprenal.00038.2023","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphoenolpyruvate carboxykinase 1 (PCK1 or PEPCK-C) is a cytosolic enzyme converting oxaloacetate to phosphoenolpyruvate, with a potential role in gluconeogenesis, ammoniagenesis, and cataplerosis in the liver. Kidney proximal tubule cells display high expression of this enzyme, whose importance is currently not well defined. We generated PCK1 kidney-specific knockout and knockin mice under the tubular cell-specific PAX8 promoter. We studied the effect of PCK1 deletion and overexpression at the renal level on tubular physiology under normal conditions and during metabolic acidosis and proteinuric renal disease. PCK1 deletion led to hyperchloremic metabolic acidosis characterized by reduced but not abolished ammoniagenesis. PCK1 deletion also resulted in glycosuria, lactaturia, and altered systemic glucose and lactate metabolism at baseline and during metabolic acidosis. Metabolic acidosis resulted in kidney injury in PCK1-deficient animals with decreased creatinine clearance and albuminuria. PCK1 further regulated energy production by the proximal tubule, and PCK1 deletion decreased ATP generation. In proteinuric chronic kidney disease, mitigation of PCK1 downregulation led to better renal function preservation. PCK1 is essential for kidney tubular cell acid-base control, mitochondrial function, and glucose/lactate homeostasis. Loss of PCK1 increases tubular injury during acidosis. Mitigating kidney tubular PCK1 downregulation during proteinuric renal disease improves renal function.<b>NEW & NOTEWORTHY</b> Phosphoenolpyruvate carboxykinase 1 (PCK1) is highly expressed in the proximal tubule. We show here that this enzyme is crucial for the maintenance of normal tubular physiology, lactate, and glucose homeostasis. PCK1 is a regulator of acid-base balance and ammoniagenesis. Preventing PCK1 downregulation during renal injury improves renal function, rendering it an important target during renal disease.</p>","PeriodicalId":7588,"journal":{"name":"American Journal of Physiology-renal Physiology","volume":"324 6","pages":"F532-F543"},"PeriodicalIF":3.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10202477/pdf/","citationCount":"0","resultStr":"{\"title\":\"PCK1 is a key regulator of metabolic and mitochondrial functions in renal tubular cells.\",\"authors\":\"Thomas Verissimo, Delal Dalga, Grégoire Arnoux, Imene Sakhi, Anna Faivre, Hannah Auwerx, Soline Bourgeois, Deborah Paolucci, Quentin Gex, Joseph M Rutkowski, David Legouis, Carsten A Wagner, Andrew M Hall, Sophie de Seigneux\",\"doi\":\"10.1152/ajprenal.00038.2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phosphoenolpyruvate carboxykinase 1 (PCK1 or PEPCK-C) is a cytosolic enzyme converting oxaloacetate to phosphoenolpyruvate, with a potential role in gluconeogenesis, ammoniagenesis, and cataplerosis in the liver. Kidney proximal tubule cells display high expression of this enzyme, whose importance is currently not well defined. We generated PCK1 kidney-specific knockout and knockin mice under the tubular cell-specific PAX8 promoter. We studied the effect of PCK1 deletion and overexpression at the renal level on tubular physiology under normal conditions and during metabolic acidosis and proteinuric renal disease. PCK1 deletion led to hyperchloremic metabolic acidosis characterized by reduced but not abolished ammoniagenesis. PCK1 deletion also resulted in glycosuria, lactaturia, and altered systemic glucose and lactate metabolism at baseline and during metabolic acidosis. Metabolic acidosis resulted in kidney injury in PCK1-deficient animals with decreased creatinine clearance and albuminuria. PCK1 further regulated energy production by the proximal tubule, and PCK1 deletion decreased ATP generation. In proteinuric chronic kidney disease, mitigation of PCK1 downregulation led to better renal function preservation. PCK1 is essential for kidney tubular cell acid-base control, mitochondrial function, and glucose/lactate homeostasis. Loss of PCK1 increases tubular injury during acidosis. Mitigating kidney tubular PCK1 downregulation during proteinuric renal disease improves renal function.<b>NEW & NOTEWORTHY</b> Phosphoenolpyruvate carboxykinase 1 (PCK1) is highly expressed in the proximal tubule. We show here that this enzyme is crucial for the maintenance of normal tubular physiology, lactate, and glucose homeostasis. PCK1 is a regulator of acid-base balance and ammoniagenesis. Preventing PCK1 downregulation during renal injury improves renal function, rendering it an important target during renal disease.</p>\",\"PeriodicalId\":7588,\"journal\":{\"name\":\"American Journal of Physiology-renal Physiology\",\"volume\":\"324 6\",\"pages\":\"F532-F543\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10202477/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Physiology-renal Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajprenal.00038.2023\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physiology-renal Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajprenal.00038.2023","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

磷酸烯醇丙酮酸羧激酶1 (Phosphoenolpyruvate carboxykinase 1, PCK1或PEPCK-C)是一种将草酰乙酸转化为磷酸烯醇丙酮酸的胞质酶,在肝脏的糖异生、氨生成和肝纤维化中具有潜在的作用。肾近端小管细胞显示这种酶的高表达,其重要性目前尚未明确。我们在小管细胞特异性PAX8启动子下产生了PCK1肾特异性敲除和敲入小鼠。我们研究了正常情况下、代谢性酸中毒和蛋白尿肾病期间PCK1缺失和肾水平过表达对肾小管生理的影响。PCK1缺失导致高氯血症代谢性酸中毒,其特征是氨作用减少但不消除。PCK1缺失也会导致糖尿、乳酸尿,以及在基线和代谢性酸中毒期间全身葡萄糖和乳酸代谢的改变。代谢性酸中毒导致pck1缺乏的动物肾损伤,肌酐清除率降低,蛋白尿减少。PCK1进一步通过近端小管调节能量的产生,PCK1的缺失减少了ATP的产生。在蛋白尿慢性肾脏疾病中,减轻PCK1下调导致更好的肾功能保存。PCK1对肾小管细胞的酸碱控制、线粒体功能和葡萄糖/乳酸稳态至关重要。PCK1的缺失增加了酸中毒时的肾小管损伤。减轻蛋白尿肾病期间肾小管PCK1下调可改善肾功能。磷酸烯醇丙酮酸羧激酶1 (PCK1)在近端小管中高度表达。我们在这里表明,这种酶对维持正常的小管生理、乳酸和葡萄糖稳态至关重要。PCK1是酸碱平衡和氨生成的调节因子。预防PCK1在肾损伤期间下调,可改善肾功能,使其成为肾脏疾病期间的重要靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PCK1 is a key regulator of metabolic and mitochondrial functions in renal tubular cells.

Phosphoenolpyruvate carboxykinase 1 (PCK1 or PEPCK-C) is a cytosolic enzyme converting oxaloacetate to phosphoenolpyruvate, with a potential role in gluconeogenesis, ammoniagenesis, and cataplerosis in the liver. Kidney proximal tubule cells display high expression of this enzyme, whose importance is currently not well defined. We generated PCK1 kidney-specific knockout and knockin mice under the tubular cell-specific PAX8 promoter. We studied the effect of PCK1 deletion and overexpression at the renal level on tubular physiology under normal conditions and during metabolic acidosis and proteinuric renal disease. PCK1 deletion led to hyperchloremic metabolic acidosis characterized by reduced but not abolished ammoniagenesis. PCK1 deletion also resulted in glycosuria, lactaturia, and altered systemic glucose and lactate metabolism at baseline and during metabolic acidosis. Metabolic acidosis resulted in kidney injury in PCK1-deficient animals with decreased creatinine clearance and albuminuria. PCK1 further regulated energy production by the proximal tubule, and PCK1 deletion decreased ATP generation. In proteinuric chronic kidney disease, mitigation of PCK1 downregulation led to better renal function preservation. PCK1 is essential for kidney tubular cell acid-base control, mitochondrial function, and glucose/lactate homeostasis. Loss of PCK1 increases tubular injury during acidosis. Mitigating kidney tubular PCK1 downregulation during proteinuric renal disease improves renal function.NEW & NOTEWORTHY Phosphoenolpyruvate carboxykinase 1 (PCK1) is highly expressed in the proximal tubule. We show here that this enzyme is crucial for the maintenance of normal tubular physiology, lactate, and glucose homeostasis. PCK1 is a regulator of acid-base balance and ammoniagenesis. Preventing PCK1 downregulation during renal injury improves renal function, rendering it an important target during renal disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
7.10%
发文量
154
审稿时长
2-4 weeks
期刊介绍: The American Journal of Physiology - Renal Physiology publishes original manuscripts on timely topics in both basic science and clinical research. Published articles address a broad range of subjects relating to the kidney and urinary tract, and may involve human or animal models, individual cell types, and isolated membrane systems. Also covered are the pathophysiological basis of renal disease processes, regulation of body fluids, and clinical research that provides mechanistic insights. Studies of renal function may be conducted using a wide range of approaches, such as biochemistry, immunology, genetics, mathematical modeling, molecular biology, as well as physiological and clinical methodologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信