Cuidan Li , Xiaoyuan Jiang , Tingting Yang , Yingjiao Ju , Zhe Yin , Liya Yue , Guannan Ma , Xuebing Wang , Ying Jing , Xinhua Luo , Shuangshuang Li , Xue Yang , Fei Chen , Dongsheng Zhou
{"title":"中国产碳青霉烯酶肺炎克雷伯菌的基因组流行病学研究","authors":"Cuidan Li , Xiaoyuan Jiang , Tingting Yang , Yingjiao Ju , Zhe Yin , Liya Yue , Guannan Ma , Xuebing Wang , Ying Jing , Xinhua Luo , Shuangshuang Li , Xue Yang , Fei Chen , Dongsheng Zhou","doi":"10.1016/j.gpb.2022.02.005","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid spread of <strong>carbapenemase</strong>-producing <strong><em>Klebsiella pneumoniae</em></strong> (cpKP) poses serious threats to public health; however, the underlying genetic basis for its dissemination is still unknown. We conducted a comprehensive <strong>genomic epidemiology</strong> analysis on 420 cpKP isolates collected from 70 hospitals in 24 provinces/autonomous regions/municipalities of China during 2009–2017 by short-/long-read sequencing. The results showed that most cpKP isolates were categorized into clonal group 258 (CG258), in which ST11 was the dominant clone. Phylogenetic analysis revealed three major clades including the top one of Clade 3 for CG258 cpKP isolates. Additionally, carbapenemase gene analysis indicated that <em>bla</em><sub>KPC</sub> was dominant in the cpKP isolates, and most <em>bla</em><sub>KPC</sub> genes were located in five major incompatibility (Inc) groups of <em>bla</em><sub>KPC</sub>-harboring plasmids. Importantly, three advantageous combinations of host–<em>bla</em><sub>KPC</sub>-carrying plasmid (Clade 3.1+3.2–IncFII<sub>pHN7A8</sub>, Clade 3.1+3.2–IncFII<sub>pHN7A8</sub>:IncR, and Clade 3.3–IncFII<sub>pHN7A8</sub>:Inc<sub>pA1763-KPC</sub>) were identified to confer cpKP isolates the advantages in both genotypes (strong correlation/coevolution) and phenotypes (resistance/growth/competition) to facilitate the nationwide spread of ST11/CG258 cpKP. Intriguingly, Bayesian skyline analysis illustrated that the three advantageous combinations might be directly associated with the strong population expansion during 2007–2008 and subsequent maintenance of the population of ST11/CG258 cpKP after 2008. We then examined <strong>drug resistance</strong> profiles of these cpKP isolates and proposed combination treatment regimens for CG258/non-CG258 cpKP infections. Thus, the findings of our systematical analysis shed light on the molecular epidemiology and genetic basis for the dissemination of ST11/CG258 cpKP in China, and much emphasis should be given to the close monitoring of advantageous cpKP–<strong>plasmid</strong> combinations.</p></div>","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":"20 6","pages":"Pages 1154-1167"},"PeriodicalIF":11.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10225488/pdf/","citationCount":"13","resultStr":"{\"title\":\"Genomic Epidemiology of Carbapenemase-producing Klebsiella pneumoniae in China\",\"authors\":\"Cuidan Li , Xiaoyuan Jiang , Tingting Yang , Yingjiao Ju , Zhe Yin , Liya Yue , Guannan Ma , Xuebing Wang , Ying Jing , Xinhua Luo , Shuangshuang Li , Xue Yang , Fei Chen , Dongsheng Zhou\",\"doi\":\"10.1016/j.gpb.2022.02.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rapid spread of <strong>carbapenemase</strong>-producing <strong><em>Klebsiella pneumoniae</em></strong> (cpKP) poses serious threats to public health; however, the underlying genetic basis for its dissemination is still unknown. We conducted a comprehensive <strong>genomic epidemiology</strong> analysis on 420 cpKP isolates collected from 70 hospitals in 24 provinces/autonomous regions/municipalities of China during 2009–2017 by short-/long-read sequencing. The results showed that most cpKP isolates were categorized into clonal group 258 (CG258), in which ST11 was the dominant clone. Phylogenetic analysis revealed three major clades including the top one of Clade 3 for CG258 cpKP isolates. Additionally, carbapenemase gene analysis indicated that <em>bla</em><sub>KPC</sub> was dominant in the cpKP isolates, and most <em>bla</em><sub>KPC</sub> genes were located in five major incompatibility (Inc) groups of <em>bla</em><sub>KPC</sub>-harboring plasmids. Importantly, three advantageous combinations of host–<em>bla</em><sub>KPC</sub>-carrying plasmid (Clade 3.1+3.2–IncFII<sub>pHN7A8</sub>, Clade 3.1+3.2–IncFII<sub>pHN7A8</sub>:IncR, and Clade 3.3–IncFII<sub>pHN7A8</sub>:Inc<sub>pA1763-KPC</sub>) were identified to confer cpKP isolates the advantages in both genotypes (strong correlation/coevolution) and phenotypes (resistance/growth/competition) to facilitate the nationwide spread of ST11/CG258 cpKP. Intriguingly, Bayesian skyline analysis illustrated that the three advantageous combinations might be directly associated with the strong population expansion during 2007–2008 and subsequent maintenance of the population of ST11/CG258 cpKP after 2008. We then examined <strong>drug resistance</strong> profiles of these cpKP isolates and proposed combination treatment regimens for CG258/non-CG258 cpKP infections. Thus, the findings of our systematical analysis shed light on the molecular epidemiology and genetic basis for the dissemination of ST11/CG258 cpKP in China, and much emphasis should be given to the close monitoring of advantageous cpKP–<strong>plasmid</strong> combinations.</p></div>\",\"PeriodicalId\":12528,\"journal\":{\"name\":\"Genomics, Proteomics & Bioinformatics\",\"volume\":\"20 6\",\"pages\":\"Pages 1154-1167\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10225488/pdf/\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics, Proteomics & Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1672022922000250\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, Proteomics & Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1672022922000250","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Genomic Epidemiology of Carbapenemase-producing Klebsiella pneumoniae in China
The rapid spread of carbapenemase-producing Klebsiella pneumoniae (cpKP) poses serious threats to public health; however, the underlying genetic basis for its dissemination is still unknown. We conducted a comprehensive genomic epidemiology analysis on 420 cpKP isolates collected from 70 hospitals in 24 provinces/autonomous regions/municipalities of China during 2009–2017 by short-/long-read sequencing. The results showed that most cpKP isolates were categorized into clonal group 258 (CG258), in which ST11 was the dominant clone. Phylogenetic analysis revealed three major clades including the top one of Clade 3 for CG258 cpKP isolates. Additionally, carbapenemase gene analysis indicated that blaKPC was dominant in the cpKP isolates, and most blaKPC genes were located in five major incompatibility (Inc) groups of blaKPC-harboring plasmids. Importantly, three advantageous combinations of host–blaKPC-carrying plasmid (Clade 3.1+3.2–IncFIIpHN7A8, Clade 3.1+3.2–IncFIIpHN7A8:IncR, and Clade 3.3–IncFIIpHN7A8:IncpA1763-KPC) were identified to confer cpKP isolates the advantages in both genotypes (strong correlation/coevolution) and phenotypes (resistance/growth/competition) to facilitate the nationwide spread of ST11/CG258 cpKP. Intriguingly, Bayesian skyline analysis illustrated that the three advantageous combinations might be directly associated with the strong population expansion during 2007–2008 and subsequent maintenance of the population of ST11/CG258 cpKP after 2008. We then examined drug resistance profiles of these cpKP isolates and proposed combination treatment regimens for CG258/non-CG258 cpKP infections. Thus, the findings of our systematical analysis shed light on the molecular epidemiology and genetic basis for the dissemination of ST11/CG258 cpKP in China, and much emphasis should be given to the close monitoring of advantageous cpKP–plasmid combinations.
期刊介绍:
Genomics, Proteomics and Bioinformatics (GPB) is the official journal of the Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation and Genetics Society of China. It aims to disseminate new developments in the field of omics and bioinformatics, publish high-quality discoveries quickly, and promote open access and online publication. GPB welcomes submissions in all areas of life science, biology, and biomedicine, with a focus on large data acquisition, analysis, and curation. Manuscripts covering omics and related bioinformatics topics are particularly encouraged. GPB is indexed/abstracted by PubMed/MEDLINE, PubMed Central, Scopus, BIOSIS Previews, Chemical Abstracts, CSCD, among others.