RECOMBINE为分层连接的单元揭示简洁的标记集。

Xubin Li, Justin Nguyen, Anil Korkut
{"title":"RECOMBINE为分层连接的单元揭示简洁的标记集。","authors":"Xubin Li, Justin Nguyen, Anil Korkut","doi":"10.1101/2023.07.17.549344","DOIUrl":null,"url":null,"abstract":"<p><p>Biological function is mediated by the hierarchical organization of cell types and states within tissue ecosystems. Identifying interpretable composite marker sets that both define and distinguish hierarchical cell identities is essential for decoding biological complexity, yet remains a major challenge. Here, we present RECOMBINE, an algorithm that identifies recurrent composite marker sets to define hierarchical cell identities. Validation using both simulated and biological datasets demonstrates that RECOMBINE achieves higher accuracy in identifying discriminative markers compared to existing approaches, including differential gene expression analysis. When applied to single-cell data and validated with spatial transcriptomics data from the mouse visual cortex, RECOMBINE identified key cell type markers and generated a robust gene panel for targeted spatial profiling. It also uncovered markers of CD8+; T cell states, including GZMK+;HAVCR2-; effector memory cells associated with anti-PD-1 therapy response, and revealed a rare intestinal subpopulation with composite markers in mice. Finally, using data from the Tabula Sapiens project, RECOMBINE identified composite marker sets across a broad range of human tissues. Together, these results highlight RECOMBINE as a robust, data-driven framework for optimized marker selection, enabling the discovery and validation of hierarchical cell identities across diverse tissue contexts.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10370072/pdf/","citationCount":"0","resultStr":"{\"title\":\"Recurrent Composite Markers of Cell Types and States.\",\"authors\":\"Xubin Li, Justin Nguyen, Anil Korkut\",\"doi\":\"10.1101/2023.07.17.549344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biological function is mediated by the hierarchical organization of cell types and states within tissue ecosystems. Identifying interpretable composite marker sets that both define and distinguish hierarchical cell identities is essential for decoding biological complexity, yet remains a major challenge. Here, we present RECOMBINE, an algorithm that identifies recurrent composite marker sets to define hierarchical cell identities. Validation using both simulated and biological datasets demonstrates that RECOMBINE achieves higher accuracy in identifying discriminative markers compared to existing approaches, including differential gene expression analysis. When applied to single-cell data and validated with spatial transcriptomics data from the mouse visual cortex, RECOMBINE identified key cell type markers and generated a robust gene panel for targeted spatial profiling. It also uncovered markers of CD8+; T cell states, including GZMK+;HAVCR2-; effector memory cells associated with anti-PD-1 therapy response, and revealed a rare intestinal subpopulation with composite markers in mice. Finally, using data from the Tabula Sapiens project, RECOMBINE identified composite marker sets across a broad range of human tissues. Together, these results highlight RECOMBINE as a robust, data-driven framework for optimized marker selection, enabling the discovery and validation of hierarchical cell identities across diverse tissue contexts.</p>\",\"PeriodicalId\":72407,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10370072/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.07.17.549344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.07.17.549344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物功能是由组织生态系统中不同细胞身份的等级组织决定的。识别可解释的标记集,既区分又定义细胞身份的层次连接,对于解码生物功能至关重要,但仍然是一个主要挑战。在这里,我们开发了RECOMBINE,这是一种基于单细胞转录组学数据将标记集映射到分层连接但不同的生物身份的算法。模拟和生物学数据验证表明,与其他方法(包括差异基因表达分析)相比,RECOMBINE识别鉴别标记的准确性更高。RECOMBINE的应用产生了来自50种疾病或健康组织类型的细胞群体的标记集资源,涵盖了242个RECOMBINE检测到的细胞身份。在小鼠视觉皮层中,RECOMBINE确定了细胞类型的关键标记,并为靶向空间转录组学生成了准确的基因面板。RECOMBINE揭示了CD8 T细胞状态的标记,包括与抗pd -1治疗反应相关的GZMK+HAVCR2效应记忆细胞。RECOMBINE还发现了小鼠肠道内具有特定标记的罕见细胞亚群,以及乳腺癌和皮肤癌的肿瘤异质性。最后,RECOMBINE成功地在基于Tabula Sapiens数据的一组全面的人体组织中鉴定出简明的、有区别的细胞类型标记。总之,RECOMBINE提供了一种强大的、数据驱动的方法,用于优化简明标记的选择,使发现和验证不同组织中的细胞身份成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recurrent Composite Markers of Cell Types and States.

Biological function is mediated by the hierarchical organization of cell types and states within tissue ecosystems. Identifying interpretable composite marker sets that both define and distinguish hierarchical cell identities is essential for decoding biological complexity, yet remains a major challenge. Here, we present RECOMBINE, an algorithm that identifies recurrent composite marker sets to define hierarchical cell identities. Validation using both simulated and biological datasets demonstrates that RECOMBINE achieves higher accuracy in identifying discriminative markers compared to existing approaches, including differential gene expression analysis. When applied to single-cell data and validated with spatial transcriptomics data from the mouse visual cortex, RECOMBINE identified key cell type markers and generated a robust gene panel for targeted spatial profiling. It also uncovered markers of CD8+; T cell states, including GZMK+;HAVCR2-; effector memory cells associated with anti-PD-1 therapy response, and revealed a rare intestinal subpopulation with composite markers in mice. Finally, using data from the Tabula Sapiens project, RECOMBINE identified composite marker sets across a broad range of human tissues. Together, these results highlight RECOMBINE as a robust, data-driven framework for optimized marker selection, enabling the discovery and validation of hierarchical cell identities across diverse tissue contexts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信