Oh Kwang Kwon , In Hyuk Bang , So Young Choi , Ju Mi Jeon , Ann-Yae Na , Yan Gao , Sam Seok Cho , Sung Hwan Ki , Youngshik Choe , Jun Nyung Lee , Yun-Sok Ha , Eun Ju Bae , Tae Gyun Kwon , Byung-Hyun Park , Sangkyu Lee
{"title":"LDHA去丁二酰酶Sirtuin 5作为侵袭性癌症癌症转移刺激因子","authors":"Oh Kwang Kwon , In Hyuk Bang , So Young Choi , Ju Mi Jeon , Ann-Yae Na , Yan Gao , Sam Seok Cho , Sung Hwan Ki , Youngshik Choe , Jun Nyung Lee , Yun-Sok Ha , Eun Ju Bae , Tae Gyun Kwon , Byung-Hyun Park , Sangkyu Lee","doi":"10.1016/j.gpb.2022.02.004","DOIUrl":null,"url":null,"abstract":"<div><p>Prostate cancer (PCa) is the most commonly diagnosed genital cancer in men worldwide. Around 80% of the patients who developed advanced PCa suffered from bone metastasis, with a sharp drop in the survival rate. Despite great efforts, the detailed mechanisms underlying castration-resistant PCa (CRPC) remain unclear. Sirtuin 5 (<strong>SIRT5</strong>), an NAD<sup>+</sup>-dependent desuccinylase, is hypothesized to be a key regulator of various cancers. However, compared to other SIRTs, the role of SIRT5 in cancer has not been extensively studied. Here, we revealed significantly decreased SIRT5 levels in aggressive PCa cells relative to the PCa stages. The correlation between the decrease in the SIRT5 level and the patient’s reduced survival rate was also confirmed. Using quantitative global succinylome analysis, we characterized a significant increase in the succinylation at lysine 118 (K118su) of <strong>lactate dehydrogenase A</strong> (LDHA), which plays a role in increasing LDH activity. As a substrate of SIRT5, LDHA-K118su significantly increased the migration and invasion of PCa cells and LDH activity in PCa patients. This study reveals the reduction of SIRT5 protein expression and LDHA-K118su as a novel mechanism involved in PCa progression, which could serve as a new target to prevent CPRC progression for PCa treatment.</p></div>","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":"21 1","pages":"Pages 177-189"},"PeriodicalIF":11.5000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10372916/pdf/","citationCount":"12","resultStr":"{\"title\":\"LDHA Desuccinylase Sirtuin 5 as A Novel Cancer Metastatic Stimulator in Aggressive Prostate Cancer\",\"authors\":\"Oh Kwang Kwon , In Hyuk Bang , So Young Choi , Ju Mi Jeon , Ann-Yae Na , Yan Gao , Sam Seok Cho , Sung Hwan Ki , Youngshik Choe , Jun Nyung Lee , Yun-Sok Ha , Eun Ju Bae , Tae Gyun Kwon , Byung-Hyun Park , Sangkyu Lee\",\"doi\":\"10.1016/j.gpb.2022.02.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Prostate cancer (PCa) is the most commonly diagnosed genital cancer in men worldwide. Around 80% of the patients who developed advanced PCa suffered from bone metastasis, with a sharp drop in the survival rate. Despite great efforts, the detailed mechanisms underlying castration-resistant PCa (CRPC) remain unclear. Sirtuin 5 (<strong>SIRT5</strong>), an NAD<sup>+</sup>-dependent desuccinylase, is hypothesized to be a key regulator of various cancers. However, compared to other SIRTs, the role of SIRT5 in cancer has not been extensively studied. Here, we revealed significantly decreased SIRT5 levels in aggressive PCa cells relative to the PCa stages. The correlation between the decrease in the SIRT5 level and the patient’s reduced survival rate was also confirmed. Using quantitative global succinylome analysis, we characterized a significant increase in the succinylation at lysine 118 (K118su) of <strong>lactate dehydrogenase A</strong> (LDHA), which plays a role in increasing LDH activity. As a substrate of SIRT5, LDHA-K118su significantly increased the migration and invasion of PCa cells and LDH activity in PCa patients. This study reveals the reduction of SIRT5 protein expression and LDHA-K118su as a novel mechanism involved in PCa progression, which could serve as a new target to prevent CPRC progression for PCa treatment.</p></div>\",\"PeriodicalId\":12528,\"journal\":{\"name\":\"Genomics, Proteomics & Bioinformatics\",\"volume\":\"21 1\",\"pages\":\"Pages 177-189\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10372916/pdf/\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics, Proteomics & Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1672022922000183\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, Proteomics & Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1672022922000183","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
LDHA Desuccinylase Sirtuin 5 as A Novel Cancer Metastatic Stimulator in Aggressive Prostate Cancer
Prostate cancer (PCa) is the most commonly diagnosed genital cancer in men worldwide. Around 80% of the patients who developed advanced PCa suffered from bone metastasis, with a sharp drop in the survival rate. Despite great efforts, the detailed mechanisms underlying castration-resistant PCa (CRPC) remain unclear. Sirtuin 5 (SIRT5), an NAD+-dependent desuccinylase, is hypothesized to be a key regulator of various cancers. However, compared to other SIRTs, the role of SIRT5 in cancer has not been extensively studied. Here, we revealed significantly decreased SIRT5 levels in aggressive PCa cells relative to the PCa stages. The correlation between the decrease in the SIRT5 level and the patient’s reduced survival rate was also confirmed. Using quantitative global succinylome analysis, we characterized a significant increase in the succinylation at lysine 118 (K118su) of lactate dehydrogenase A (LDHA), which plays a role in increasing LDH activity. As a substrate of SIRT5, LDHA-K118su significantly increased the migration and invasion of PCa cells and LDH activity in PCa patients. This study reveals the reduction of SIRT5 protein expression and LDHA-K118su as a novel mechanism involved in PCa progression, which could serve as a new target to prevent CPRC progression for PCa treatment.
期刊介绍:
Genomics, Proteomics and Bioinformatics (GPB) is the official journal of the Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation and Genetics Society of China. It aims to disseminate new developments in the field of omics and bioinformatics, publish high-quality discoveries quickly, and promote open access and online publication. GPB welcomes submissions in all areas of life science, biology, and biomedicine, with a focus on large data acquisition, analysis, and curation. Manuscripts covering omics and related bioinformatics topics are particularly encouraged. GPB is indexed/abstracted by PubMed/MEDLINE, PubMed Central, Scopus, BIOSIS Previews, Chemical Abstracts, CSCD, among others.