决策过程中的皮层信息瓶颈。

Michael Kleinman, Tian Wang, Derek Xiao, Ebrahim Feghhi, Kenji Lee, Nicole Carr, Yuke Li, Nima Hadidi, Chandramouli Chandrasekaran, Jonathan C Kao
{"title":"决策过程中的皮层信息瓶颈。","authors":"Michael Kleinman, Tian Wang, Derek Xiao, Ebrahim Feghhi, Kenji Lee, Nicole Carr, Yuke Li, Nima Hadidi, Chandramouli Chandrasekaran, Jonathan C Kao","doi":"10.1101/2023.07.12.548742","DOIUrl":null,"url":null,"abstract":"<p><p>Decision-making emerges from distributed computations across multiple brain areas, but it is unclear <i>why</i> the brain distributes the computation. In deep learning, artificial neural networks use multiple areas (or layers) and form optimal representations of task inputs. These optimal representations are <i>sufficient</i> to perform the task well, but <i>minimal</i> so they are invariant to other irrelevant variables. We recorded single neurons and multiunits in dorsolateral prefrontal cortex (DLPFC) and dorsal premotor cortex (PMd) in monkeys during a perceptual decision-making task. We found that while DLPFC represents task-related inputs required to compute the choice, the downstream PMd contains a minimal sufficient, or optimal, representation of the choice. To identify a mechanism for how cortex may form these optimal representations, we trained a multi-area recurrent neural network (RNN) to perform the task. Remarkably, DLPFC and PMd resembling representations emerged in the early and late areas of the multi-area RNN, respectively. The DLPFC-resembling area partially orthogonalized choice information and task inputs and this choice information was preferentially propagated to downstream areas through selective alignment with inter-area connections, while remaining task information was not. Our results suggest that cortex uses multi-area computation to form minimal sufficient representations by preferential propagation of relevant information between areas.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369960/pdf/nihpp-2023.07.12.548742v1.pdf","citationCount":"0","resultStr":"{\"title\":\"The information bottleneck as a principle underlying multi-area cortical representations during decision-making.\",\"authors\":\"Michael Kleinman, Tian Wang, Derek Xiao, Ebrahim Feghhi, Kenji Lee, Nicole Carr, Yuke Li, Nima Hadidi, Chandramouli Chandrasekaran, Jonathan C Kao\",\"doi\":\"10.1101/2023.07.12.548742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Decision-making emerges from distributed computations across multiple brain areas, but it is unclear <i>why</i> the brain distributes the computation. In deep learning, artificial neural networks use multiple areas (or layers) and form optimal representations of task inputs. These optimal representations are <i>sufficient</i> to perform the task well, but <i>minimal</i> so they are invariant to other irrelevant variables. We recorded single neurons and multiunits in dorsolateral prefrontal cortex (DLPFC) and dorsal premotor cortex (PMd) in monkeys during a perceptual decision-making task. We found that while DLPFC represents task-related inputs required to compute the choice, the downstream PMd contains a minimal sufficient, or optimal, representation of the choice. To identify a mechanism for how cortex may form these optimal representations, we trained a multi-area recurrent neural network (RNN) to perform the task. Remarkably, DLPFC and PMd resembling representations emerged in the early and late areas of the multi-area RNN, respectively. The DLPFC-resembling area partially orthogonalized choice information and task inputs and this choice information was preferentially propagated to downstream areas through selective alignment with inter-area connections, while remaining task information was not. Our results suggest that cortex uses multi-area computation to form minimal sufficient representations by preferential propagation of relevant information between areas.</p>\",\"PeriodicalId\":72407,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369960/pdf/nihpp-2023.07.12.548742v1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.07.12.548742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.07.12.548742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

决策产生于大脑多个区域的分布式计算,但尚不清楚大脑为什么会分布计算。在深度学习中,人工神经网络使用多个区域(或层)来形成任务输入的最优表示。这些最优表示足以很好地执行任务,但最小,因此它们对其他无关变量不变。在感知决策任务中,我们记录了猴子背外侧前额叶皮层(DLPFC)和背侧前运动皮层(PMd)的单个神经元和多个单元。我们发现,虽然DLPFC表示计算选择所需的任务相关输入,但下游PMd包含选择的最小充分或最优表示。为了确定皮层如何形成这些最佳表征的机制,我们训练了一个多区域递归神经网络(RNN)来执行这项任务。值得注意的是,DLPFC和类似PMd的表示分别出现在多区域RNN的早期和晚期。类似DLPFC的区域部分正交化了选择信息和任务输入,并且该选择信息通过与区域间连接的选择性对准被优先传播到下游区域,而剩余的任务信息则没有。我们的结果表明,皮层使用多区域计算,通过在区域之间优先传播相关信息来形成最小的充分表示。意义:大脑使用多个区域进行认知、决策和行动,但尚不清楚为什么大脑会分配计算,以及为什么皮层活动因大脑区域而异。机器学习和信息理论表明,多个领域的一个好处是,它提供了一个“信息瓶颈”,将输入压缩为最小且足以解决任务的最佳表示。结合行为动物的实验记录和计算模拟,我们表明,通过优先传播早期区域中存在的任务相关信息,后期大脑区域有形成任务输入的最小充分表示的趋势。因此,我们的研究结果深入了解了为什么大脑使用多个大脑区域来支持决策和行动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The information bottleneck as a principle underlying multi-area cortical representations during decision-making.

Decision-making emerges from distributed computations across multiple brain areas, but it is unclear why the brain distributes the computation. In deep learning, artificial neural networks use multiple areas (or layers) and form optimal representations of task inputs. These optimal representations are sufficient to perform the task well, but minimal so they are invariant to other irrelevant variables. We recorded single neurons and multiunits in dorsolateral prefrontal cortex (DLPFC) and dorsal premotor cortex (PMd) in monkeys during a perceptual decision-making task. We found that while DLPFC represents task-related inputs required to compute the choice, the downstream PMd contains a minimal sufficient, or optimal, representation of the choice. To identify a mechanism for how cortex may form these optimal representations, we trained a multi-area recurrent neural network (RNN) to perform the task. Remarkably, DLPFC and PMd resembling representations emerged in the early and late areas of the multi-area RNN, respectively. The DLPFC-resembling area partially orthogonalized choice information and task inputs and this choice information was preferentially propagated to downstream areas through selective alignment with inter-area connections, while remaining task information was not. Our results suggest that cortex uses multi-area computation to form minimal sufficient representations by preferential propagation of relevant information between areas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信