Michael Kleinman, Tian Wang, Derek Xiao, Ebrahim Feghhi, Kenji Lee, Nicole Carr, Yuke Li, Nima Hadidi, Chandramouli Chandrasekaran, Jonathan C Kao
{"title":"决策过程中的皮层信息瓶颈。","authors":"Michael Kleinman, Tian Wang, Derek Xiao, Ebrahim Feghhi, Kenji Lee, Nicole Carr, Yuke Li, Nima Hadidi, Chandramouli Chandrasekaran, Jonathan C Kao","doi":"10.1101/2023.07.12.548742","DOIUrl":null,"url":null,"abstract":"<p><p>Decision-making emerges from distributed computations across multiple brain areas, but it is unclear <i>why</i> the brain distributes the computation. In deep learning, artificial neural networks use multiple areas (or layers) and form optimal representations of task inputs. These optimal representations are <i>sufficient</i> to perform the task well, but <i>minimal</i> so they are invariant to other irrelevant variables. We recorded single neurons and multiunits in dorsolateral prefrontal cortex (DLPFC) and dorsal premotor cortex (PMd) in monkeys during a perceptual decision-making task. We found that while DLPFC represents task-related inputs required to compute the choice, the downstream PMd contains a minimal sufficient, or optimal, representation of the choice. To identify a mechanism for how cortex may form these optimal representations, we trained a multi-area recurrent neural network (RNN) to perform the task. Remarkably, DLPFC and PMd resembling representations emerged in the early and late areas of the multi-area RNN, respectively. The DLPFC-resembling area partially orthogonalized choice information and task inputs and this choice information was preferentially propagated to downstream areas through selective alignment with inter-area connections, while remaining task information was not. Our results suggest that cortex uses multi-area computation to form minimal sufficient representations by preferential propagation of relevant information between areas.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369960/pdf/nihpp-2023.07.12.548742v1.pdf","citationCount":"0","resultStr":"{\"title\":\"The information bottleneck as a principle underlying multi-area cortical representations during decision-making.\",\"authors\":\"Michael Kleinman, Tian Wang, Derek Xiao, Ebrahim Feghhi, Kenji Lee, Nicole Carr, Yuke Li, Nima Hadidi, Chandramouli Chandrasekaran, Jonathan C Kao\",\"doi\":\"10.1101/2023.07.12.548742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Decision-making emerges from distributed computations across multiple brain areas, but it is unclear <i>why</i> the brain distributes the computation. In deep learning, artificial neural networks use multiple areas (or layers) and form optimal representations of task inputs. These optimal representations are <i>sufficient</i> to perform the task well, but <i>minimal</i> so they are invariant to other irrelevant variables. We recorded single neurons and multiunits in dorsolateral prefrontal cortex (DLPFC) and dorsal premotor cortex (PMd) in monkeys during a perceptual decision-making task. We found that while DLPFC represents task-related inputs required to compute the choice, the downstream PMd contains a minimal sufficient, or optimal, representation of the choice. To identify a mechanism for how cortex may form these optimal representations, we trained a multi-area recurrent neural network (RNN) to perform the task. Remarkably, DLPFC and PMd resembling representations emerged in the early and late areas of the multi-area RNN, respectively. The DLPFC-resembling area partially orthogonalized choice information and task inputs and this choice information was preferentially propagated to downstream areas through selective alignment with inter-area connections, while remaining task information was not. Our results suggest that cortex uses multi-area computation to form minimal sufficient representations by preferential propagation of relevant information between areas.</p>\",\"PeriodicalId\":72407,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369960/pdf/nihpp-2023.07.12.548742v1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.07.12.548742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.07.12.548742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The information bottleneck as a principle underlying multi-area cortical representations during decision-making.
Decision-making emerges from distributed computations across multiple brain areas, but it is unclear why the brain distributes the computation. In deep learning, artificial neural networks use multiple areas (or layers) and form optimal representations of task inputs. These optimal representations are sufficient to perform the task well, but minimal so they are invariant to other irrelevant variables. We recorded single neurons and multiunits in dorsolateral prefrontal cortex (DLPFC) and dorsal premotor cortex (PMd) in monkeys during a perceptual decision-making task. We found that while DLPFC represents task-related inputs required to compute the choice, the downstream PMd contains a minimal sufficient, or optimal, representation of the choice. To identify a mechanism for how cortex may form these optimal representations, we trained a multi-area recurrent neural network (RNN) to perform the task. Remarkably, DLPFC and PMd resembling representations emerged in the early and late areas of the multi-area RNN, respectively. The DLPFC-resembling area partially orthogonalized choice information and task inputs and this choice information was preferentially propagated to downstream areas through selective alignment with inter-area connections, while remaining task information was not. Our results suggest that cortex uses multi-area computation to form minimal sufficient representations by preferential propagation of relevant information between areas.