用图像处理方法优化CBCT数据,用熔融沉积建模3D打印生产。

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Hamdi Sayin, Bekir Aksoy, Koray Özsoy, Derya Yildirim
{"title":"用图像处理方法优化CBCT数据,用熔融沉积建模3D打印生产。","authors":"Hamdi Sayin, Bekir Aksoy, Koray Özsoy, Derya Yildirim","doi":"10.1007/s11517-023-02889-w","DOIUrl":null,"url":null,"abstract":"<p><p>The present study has investigated the effect of the removal of artifacts in cone beam computed tomography (CBCT) images with image processing techniques to dental implant planning. The aim of this study has been to benefit from the novel image processing techniques and additive manufacturing technologies in order to change the existing approach in the usage of the 3D model in the orthogonal surgery, traumatic cases, and tumor operations and to solve the restrictions in surgical operations. In the study, firstly, 3 × 3, 5 × 5, and 7 × 7 kernel values were determined on the CBCT image data of the patient. The determined kernel values were applied on CBCT images by choosing median, median-mean-Gaussian (MMG), and bilateral filters, which are quite successful in removing noise in medical images. A thresholding process to separate teeth and bones from soft tissue regions on CBCT images, histogram normalization for a balanced color distribution, morphology operations to reduce noise areas, and tooth and bone boundaries were determined as closely as possible to patient anatomy. The original image and the images obtained from image enhancement techniques were compared. Results showed that the 3 × 3 median filtering method from three different kernel values out of three different image processing methods used in the study greatly improved the artifacts. It has also been shown that the availability of image processing and additive manufacturing methods on CBCT images has been shown to be a highly important factor before dental surgery planning.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":"2235-2246"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of CBCT data with image processing methods and production with fused deposition modeling 3D printing.\",\"authors\":\"Hamdi Sayin, Bekir Aksoy, Koray Özsoy, Derya Yildirim\",\"doi\":\"10.1007/s11517-023-02889-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present study has investigated the effect of the removal of artifacts in cone beam computed tomography (CBCT) images with image processing techniques to dental implant planning. The aim of this study has been to benefit from the novel image processing techniques and additive manufacturing technologies in order to change the existing approach in the usage of the 3D model in the orthogonal surgery, traumatic cases, and tumor operations and to solve the restrictions in surgical operations. In the study, firstly, 3 × 3, 5 × 5, and 7 × 7 kernel values were determined on the CBCT image data of the patient. The determined kernel values were applied on CBCT images by choosing median, median-mean-Gaussian (MMG), and bilateral filters, which are quite successful in removing noise in medical images. A thresholding process to separate teeth and bones from soft tissue regions on CBCT images, histogram normalization for a balanced color distribution, morphology operations to reduce noise areas, and tooth and bone boundaries were determined as closely as possible to patient anatomy. The original image and the images obtained from image enhancement techniques were compared. Results showed that the 3 × 3 median filtering method from three different kernel values out of three different image processing methods used in the study greatly improved the artifacts. It has also been shown that the availability of image processing and additive manufacturing methods on CBCT images has been shown to be a highly important factor before dental surgery planning.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"2235-2246\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-023-02889-w\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-023-02889-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了用图像处理技术去除锥形束计算机断层扫描(CBCT)图像中的伪影对种植牙规划的影响。本研究的目的是利用新的图像处理技术和增材制造技术,以改变现有的三维模型在正交手术、创伤病例和肿瘤手术中的使用方法,并解决外科手术中的限制。本研究首先对患者的CBCT图像数据确定3 × 3、5 × 5和7 × 7核值。将确定的核值应用于CBCT图像上,分别选择中值、中位数-平均高斯(MMG)和双边滤波器,取得了较好的去噪效果。采用阈值处理将CBCT图像上的牙齿和骨骼与软组织区域分离,直方图归一化以实现平衡的颜色分布,形态学操作以减少噪声区域,并确定尽可能接近患者解剖结构的牙齿和骨骼边界。对原始图像和增强后的图像进行了比较。结果表明,在三种不同的图像处理方法中,对三种不同的核值进行3 × 3中值滤波的方法大大改善了伪影。研究还表明,在牙科手术计划之前,CBCT图像的图像处理和增材制造方法的可用性已被证明是一个非常重要的因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of CBCT data with image processing methods and production with fused deposition modeling 3D printing.

The present study has investigated the effect of the removal of artifacts in cone beam computed tomography (CBCT) images with image processing techniques to dental implant planning. The aim of this study has been to benefit from the novel image processing techniques and additive manufacturing technologies in order to change the existing approach in the usage of the 3D model in the orthogonal surgery, traumatic cases, and tumor operations and to solve the restrictions in surgical operations. In the study, firstly, 3 × 3, 5 × 5, and 7 × 7 kernel values were determined on the CBCT image data of the patient. The determined kernel values were applied on CBCT images by choosing median, median-mean-Gaussian (MMG), and bilateral filters, which are quite successful in removing noise in medical images. A thresholding process to separate teeth and bones from soft tissue regions on CBCT images, histogram normalization for a balanced color distribution, morphology operations to reduce noise areas, and tooth and bone boundaries were determined as closely as possible to patient anatomy. The original image and the images obtained from image enhancement techniques were compared. Results showed that the 3 × 3 median filtering method from three different kernel values out of three different image processing methods used in the study greatly improved the artifacts. It has also been shown that the availability of image processing and additive manufacturing methods on CBCT images has been shown to be a highly important factor before dental surgery planning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信