Fabio Cecconi, Giulio Costantini, Carlo Guardiani, Marco Baldovin, Angelo Vulpiani
{"title":"变构行为的相关,响应和熵方法:对泛素案例的关键比较。","authors":"Fabio Cecconi, Giulio Costantini, Carlo Guardiani, Marco Baldovin, Angelo Vulpiani","doi":"10.1088/1478-3975/ace1c5","DOIUrl":null,"url":null,"abstract":"<p><p>Correlation analysis and its close variant principal component analysis are tools widely applied to predict the biological functions of macromolecules in terms of the relationship between fluctuation dynamics and structural properties. However, since this kind of analysis does not necessarily imply causation links among the elements of the system, its results run the risk of being biologically misinterpreted. By using as a benchmark the structure of ubiquitin, we report a critical comparison of correlation-based analysis with the analysis performed using two other indicators, response function and transfer entropy, that quantify the causal dependence. The use of ubiquitin stems from its simple structure and from recent experimental evidence of an allosteric control of its binding to target substrates. We discuss the ability of correlation, response and transfer-entropy analysis in detecting the role of the residues involved in the allosteric mechanism of ubiquitin as deduced by experiments. To maintain the comparison as much as free from the complexity of the modeling approach and the quality of time series, we describe the fluctuations of ubiquitin native state by the Gaussian network model which, being fully solvable, allows one to derive analytical expressions of the observables of interest. Our comparison suggests that a good strategy consists in combining correlation, response and transfer entropy, such that the preliminary information extracted from correlation analysis is validated by the two other indicators in order to discard those spurious correlations not associated with true causal dependencies.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlation, response and entropy approaches to allosteric behaviors: a critical comparison on the ubiquitin case.\",\"authors\":\"Fabio Cecconi, Giulio Costantini, Carlo Guardiani, Marco Baldovin, Angelo Vulpiani\",\"doi\":\"10.1088/1478-3975/ace1c5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Correlation analysis and its close variant principal component analysis are tools widely applied to predict the biological functions of macromolecules in terms of the relationship between fluctuation dynamics and structural properties. However, since this kind of analysis does not necessarily imply causation links among the elements of the system, its results run the risk of being biologically misinterpreted. By using as a benchmark the structure of ubiquitin, we report a critical comparison of correlation-based analysis with the analysis performed using two other indicators, response function and transfer entropy, that quantify the causal dependence. The use of ubiquitin stems from its simple structure and from recent experimental evidence of an allosteric control of its binding to target substrates. We discuss the ability of correlation, response and transfer-entropy analysis in detecting the role of the residues involved in the allosteric mechanism of ubiquitin as deduced by experiments. To maintain the comparison as much as free from the complexity of the modeling approach and the quality of time series, we describe the fluctuations of ubiquitin native state by the Gaussian network model which, being fully solvable, allows one to derive analytical expressions of the observables of interest. Our comparison suggests that a good strategy consists in combining correlation, response and transfer entropy, such that the preliminary information extracted from correlation analysis is validated by the two other indicators in order to discard those spurious correlations not associated with true causal dependencies.</p>\",\"PeriodicalId\":20207,\"journal\":{\"name\":\"Physical biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1088/1478-3975/ace1c5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/ace1c5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Correlation, response and entropy approaches to allosteric behaviors: a critical comparison on the ubiquitin case.
Correlation analysis and its close variant principal component analysis are tools widely applied to predict the biological functions of macromolecules in terms of the relationship between fluctuation dynamics and structural properties. However, since this kind of analysis does not necessarily imply causation links among the elements of the system, its results run the risk of being biologically misinterpreted. By using as a benchmark the structure of ubiquitin, we report a critical comparison of correlation-based analysis with the analysis performed using two other indicators, response function and transfer entropy, that quantify the causal dependence. The use of ubiquitin stems from its simple structure and from recent experimental evidence of an allosteric control of its binding to target substrates. We discuss the ability of correlation, response and transfer-entropy analysis in detecting the role of the residues involved in the allosteric mechanism of ubiquitin as deduced by experiments. To maintain the comparison as much as free from the complexity of the modeling approach and the quality of time series, we describe the fluctuations of ubiquitin native state by the Gaussian network model which, being fully solvable, allows one to derive analytical expressions of the observables of interest. Our comparison suggests that a good strategy consists in combining correlation, response and transfer entropy, such that the preliminary information extracted from correlation analysis is validated by the two other indicators in order to discard those spurious correlations not associated with true causal dependencies.
期刊介绍:
Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity.
Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as:
molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions
subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure
intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division
systems biology, e.g. signaling, gene regulation and metabolic networks
cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms
cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis
cell-cell interactions, cell aggregates, organoids, tissues and organs
developmental dynamics, including pattern formation and morphogenesis
physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation
neuronal systems, including information processing by networks, memory and learning
population dynamics, ecology, and evolution
collective action and emergence of collective phenomena.