Mitsutaro Umehara, Lan Zhou, Joel A. Haber, Dan Guevarra, Kevin Kan, Paul F. Newhouse, John M. Gregoire*
{"title":"镧-铋-铜体系中氧化硫化物的组合合成","authors":"Mitsutaro Umehara, Lan Zhou, Joel A. Haber, Dan Guevarra, Kevin Kan, Paul F. Newhouse, John M. Gregoire*","doi":"10.1021/acscombsci.0c00015","DOIUrl":null,"url":null,"abstract":"<p >Establishing synthesis methods for a target material constitutes?a grand challenge in materials research, which is compounded with use-inspired specifications on the format of the material. Solar photochemistry using thin film materials is a promising technology for which many complex materials are being proposed, and the present work describes application of combinatorial methods to explore the synthesis of predicted La–Bi–Cu oxysulfide photocathodes, in particular alloys of LaCuOS and BiCuOS. The variation in concentration of three cations and two anions in thin film materials, and crystallization thereof, is achieved by a combination of reactive sputtering and thermal processes including reactive annealing and rapid thermal processing. Composition and structural characterization establish composition-processing-structure relationships that highlight the breadth of processing conditions required for synthesis of LaCuOS and BiCuOS. The relative irreducibility of La oxides and limited diffusion indicate the need for high temperature processing, which conflicts with the temperature limits for mitigating evaporation of Bi and S. Collectively the results indicate that alloys of these phases will require reactive annealing protocols that are uniquely tailored to each composition, motivating advancement of dynamic processing capabilities to further automate discovery of synthesis routes.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acscombsci.0c00015","citationCount":"1","resultStr":"{\"title\":\"Combinatorial Synthesis of Oxysulfides in the Lanthanum–Bismuth-Copper System\",\"authors\":\"Mitsutaro Umehara, Lan Zhou, Joel A. Haber, Dan Guevarra, Kevin Kan, Paul F. Newhouse, John M. Gregoire*\",\"doi\":\"10.1021/acscombsci.0c00015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Establishing synthesis methods for a target material constitutes?a grand challenge in materials research, which is compounded with use-inspired specifications on the format of the material. Solar photochemistry using thin film materials is a promising technology for which many complex materials are being proposed, and the present work describes application of combinatorial methods to explore the synthesis of predicted La–Bi–Cu oxysulfide photocathodes, in particular alloys of LaCuOS and BiCuOS. The variation in concentration of three cations and two anions in thin film materials, and crystallization thereof, is achieved by a combination of reactive sputtering and thermal processes including reactive annealing and rapid thermal processing. Composition and structural characterization establish composition-processing-structure relationships that highlight the breadth of processing conditions required for synthesis of LaCuOS and BiCuOS. The relative irreducibility of La oxides and limited diffusion indicate the need for high temperature processing, which conflicts with the temperature limits for mitigating evaporation of Bi and S. Collectively the results indicate that alloys of these phases will require reactive annealing protocols that are uniquely tailored to each composition, motivating advancement of dynamic processing capabilities to further automate discovery of synthesis routes.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2020-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1021/acscombsci.0c00015\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscombsci.0c00015\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscombsci.0c00015","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Combinatorial Synthesis of Oxysulfides in the Lanthanum–Bismuth-Copper System
Establishing synthesis methods for a target material constitutes?a grand challenge in materials research, which is compounded with use-inspired specifications on the format of the material. Solar photochemistry using thin film materials is a promising technology for which many complex materials are being proposed, and the present work describes application of combinatorial methods to explore the synthesis of predicted La–Bi–Cu oxysulfide photocathodes, in particular alloys of LaCuOS and BiCuOS. The variation in concentration of three cations and two anions in thin film materials, and crystallization thereof, is achieved by a combination of reactive sputtering and thermal processes including reactive annealing and rapid thermal processing. Composition and structural characterization establish composition-processing-structure relationships that highlight the breadth of processing conditions required for synthesis of LaCuOS and BiCuOS. The relative irreducibility of La oxides and limited diffusion indicate the need for high temperature processing, which conflicts with the temperature limits for mitigating evaporation of Bi and S. Collectively the results indicate that alloys of these phases will require reactive annealing protocols that are uniquely tailored to each composition, motivating advancement of dynamic processing capabilities to further automate discovery of synthesis routes.