{"title":"基于电子病历的临床预测超图变换器。","authors":"Ran Xu, Mohammed K Ali, Joyce C Ho, Carl Yang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Electronic health records (EHR) data contain rich information about patients' health conditions including diagnosis, procedures, medications and etc., which have been widely used to facilitate digital medicine. Despite its importance, it is often non-trivial to learn useful representations for patients' visits that support downstream clinical predictions, as each visit contains massive and diverse medical codes. As a result, the complex interactions among medical codes are often not captured, which leads to substandard predictions. To better model these complex relations, we leverage hypergraphs, which go beyond pairwise relations to jointly learn the representations for visits and medical codes. We also propose to use the self-attention mechanism to automatically identify the most relevant medical codes for each visit based on the downstream clinical predictions with better generalization power. Experiments on two EHR datasets show that our proposed method not only yields superior performance, but also provides reasonable insights towards the target tasks.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10283128/pdf/2220.pdf","citationCount":"0","resultStr":"{\"title\":\"Hypergraph Transformers for EHR-based Clinical Predictions.\",\"authors\":\"Ran Xu, Mohammed K Ali, Joyce C Ho, Carl Yang\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electronic health records (EHR) data contain rich information about patients' health conditions including diagnosis, procedures, medications and etc., which have been widely used to facilitate digital medicine. Despite its importance, it is often non-trivial to learn useful representations for patients' visits that support downstream clinical predictions, as each visit contains massive and diverse medical codes. As a result, the complex interactions among medical codes are often not captured, which leads to substandard predictions. To better model these complex relations, we leverage hypergraphs, which go beyond pairwise relations to jointly learn the representations for visits and medical codes. We also propose to use the self-attention mechanism to automatically identify the most relevant medical codes for each visit based on the downstream clinical predictions with better generalization power. Experiments on two EHR datasets show that our proposed method not only yields superior performance, but also provides reasonable insights towards the target tasks.</p>\",\"PeriodicalId\":72181,\"journal\":{\"name\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10283128/pdf/2220.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Hypergraph Transformers for EHR-based Clinical Predictions.
Electronic health records (EHR) data contain rich information about patients' health conditions including diagnosis, procedures, medications and etc., which have been widely used to facilitate digital medicine. Despite its importance, it is often non-trivial to learn useful representations for patients' visits that support downstream clinical predictions, as each visit contains massive and diverse medical codes. As a result, the complex interactions among medical codes are often not captured, which leads to substandard predictions. To better model these complex relations, we leverage hypergraphs, which go beyond pairwise relations to jointly learn the representations for visits and medical codes. We also propose to use the self-attention mechanism to automatically identify the most relevant medical codes for each visit based on the downstream clinical predictions with better generalization power. Experiments on two EHR datasets show that our proposed method not only yields superior performance, but also provides reasonable insights towards the target tasks.