连接方法的自适应图像恢复算法

Ahmed Roukhe, Aziz Nachit
{"title":"连接方法的自适应图像恢复算法","authors":"Ahmed Roukhe,&nbsp;Aziz Nachit","doi":"10.1016/S1251-8069(98)80036-5","DOIUrl":null,"url":null,"abstract":"<div><p>The analysis of brain operations allows us to build a computational model of an artificial neural network, able to restore gray level images degraded by a shiftinvariant blur function and additive noise. Our approach for restoration is carried out using a dynamic algorithm which minimizes an energy function. We show that it is not necessary to know the blur filter.</p></div>","PeriodicalId":100304,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy","volume":"326 4","pages":"Pages 263-271"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1251-8069(98)80036-5","citationCount":"1","resultStr":"{\"title\":\"Algorithme adaptatif de restauration d'images par les méthodes connexionnistes\",\"authors\":\"Ahmed Roukhe,&nbsp;Aziz Nachit\",\"doi\":\"10.1016/S1251-8069(98)80036-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The analysis of brain operations allows us to build a computational model of an artificial neural network, able to restore gray level images degraded by a shiftinvariant blur function and additive noise. Our approach for restoration is carried out using a dynamic algorithm which minimizes an energy function. We show that it is not necessary to know the blur filter.</p></div>\",\"PeriodicalId\":100304,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy\",\"volume\":\"326 4\",\"pages\":\"Pages 263-271\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1251-8069(98)80036-5\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1251806998800365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1251806998800365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对大脑操作的分析使我们能够建立一个人工神经网络的计算模型,能够恢复被移位模糊函数和加性噪声退化的灰度级图像。我们的恢复方法是使用最小化能量函数的动态算法进行的。我们证明了不需要知道模糊滤镜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithme adaptatif de restauration d'images par les méthodes connexionnistes

The analysis of brain operations allows us to build a computational model of an artificial neural network, able to restore gray level images degraded by a shiftinvariant blur function and additive noise. Our approach for restoration is carried out using a dynamic algorithm which minimizes an energy function. We show that it is not necessary to know the blur filter.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信