{"title":"姜黄诱导转录因子FOXP3下调人趋化因子CCR5的表达并抑制HIV-1感染。","authors":"Long Feng, Wu-Hao Lu, Qing-Ya Li, Hai-Yan Zhang, Li-Ran Xu, Wen-Qiao Zang, Wen-Tao Guo, Yan-Fang Li, Wen-Jin Zheng, Yu-Xuan Geng, Qing Li, Yu-Han Liu","doi":"10.1142/S0192415X23500544","DOIUrl":null,"url":null,"abstract":"<p><p>HIV mutations occur frequently despite the substantial success of combination antiretroviral therapy, which significantly impairs HIV progression. Failure to develop specific vaccines, the occurrence of drug-resistant strains, and the high incidence of adverse effects due to combination antiviral therapy regimens call for novel and safer antivirals. Natural products are an important source of new anti-infective agents. For instance, curcumin inhibits HIV and inflammation in cell culture assays. Curcumin, the principal constituent of the dried rhizomes of <i>Curcuma longa</i> L. (turmeric), is known as a strong anti-oxidant and anti-inflammatory agent with different pharmacological effects. This work aims to assess curcumin's inhibitory effects on HIV <i>in vitro</i> and to explore the underpinning mechanism, focusing on CCR5 and the transcription factor forkhead box protein P3 (FOXP3). First, curcumin and the RT inhibitor zidovudine (AZT) were evaluated for their inhibitory properties. HIV-1 pseudovirus infectivity was determined by green fluorescence and luciferase activity measurements in HEK293T cells. AZT was used as a positive control that inhibited HIV-1 pseudoviruses dose-dependently, with IC50 values in the nanomolar range. Then, a molecular docking analysis was carried out to assess the binding affinities of curcumin for CCR5 and HIV-1 RNase H/RT. The anti-HIV activity assay showed that curcumin inhibited HIV-1 infection, and the molecular docking analysis revealed equilibrium dissociation constants of [Formula: see text]9.8[Formula: see text]kcal/mol and [Formula: see text]9.3[Formula: see text]kcal/mol between curcumin and CCR5 and HIV-1 RNase H/RT, respectively. To examine curcumin's anti-HIV effect and its mechanism <i>in vitro</i>, cell cytotoxicity, transcriptome sequencing, and CCR5 and FOXP3 amounts were assessed at different concentrations of curcumin. In addition, human CCR5 promoter deletion constructs and the FOXP3 expression plasmid pRP-FOXP3 (with an EGFP tag) were generated. Whether FOXP3 DNA binding to the CCR5 promoter was blunted by curcumin was examined using transfection assays employing truncated CCR5 gene promoter constructs, a luciferase reporter assay, and a chromatin immunoprecipitation (ChIP) assay. Furthermore, micromolar concentrations of curcumin inactivated the nuclear transcription factor FOXP3, which resulted in decreased expression of CCR5 in Jurkat cells. Moreover, curcumin inhibited PI3K-AKT activation and its downstream target FOXP3. These findings provide mechanistic evidence encouraging further assessment of curcumin as a dietary agent used to reduce the virulence of CCR5-tropic HIV-1. Curcumin-mediated FOXP3 degradation was also reflected in its functions, namely, CCR5 promoter transactivation and HIV-1 virion production. Furthermore, curcumin inhibition of CCR5 and HIV-1 might constitute a potential therapeutic strategy for reducing HIV progression.</p>","PeriodicalId":50814,"journal":{"name":"American Journal of Chinese Medicine","volume":"51 5","pages":"1189-1209"},"PeriodicalIF":4.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<i>Curcuma Longa</i> Induces the Transcription Factor FOXP3 to Downregulate Human Chemokine CCR5 Expression and Inhibit HIV-1 Infection.\",\"authors\":\"Long Feng, Wu-Hao Lu, Qing-Ya Li, Hai-Yan Zhang, Li-Ran Xu, Wen-Qiao Zang, Wen-Tao Guo, Yan-Fang Li, Wen-Jin Zheng, Yu-Xuan Geng, Qing Li, Yu-Han Liu\",\"doi\":\"10.1142/S0192415X23500544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>HIV mutations occur frequently despite the substantial success of combination antiretroviral therapy, which significantly impairs HIV progression. Failure to develop specific vaccines, the occurrence of drug-resistant strains, and the high incidence of adverse effects due to combination antiviral therapy regimens call for novel and safer antivirals. Natural products are an important source of new anti-infective agents. For instance, curcumin inhibits HIV and inflammation in cell culture assays. Curcumin, the principal constituent of the dried rhizomes of <i>Curcuma longa</i> L. (turmeric), is known as a strong anti-oxidant and anti-inflammatory agent with different pharmacological effects. This work aims to assess curcumin's inhibitory effects on HIV <i>in vitro</i> and to explore the underpinning mechanism, focusing on CCR5 and the transcription factor forkhead box protein P3 (FOXP3). First, curcumin and the RT inhibitor zidovudine (AZT) were evaluated for their inhibitory properties. HIV-1 pseudovirus infectivity was determined by green fluorescence and luciferase activity measurements in HEK293T cells. AZT was used as a positive control that inhibited HIV-1 pseudoviruses dose-dependently, with IC50 values in the nanomolar range. Then, a molecular docking analysis was carried out to assess the binding affinities of curcumin for CCR5 and HIV-1 RNase H/RT. The anti-HIV activity assay showed that curcumin inhibited HIV-1 infection, and the molecular docking analysis revealed equilibrium dissociation constants of [Formula: see text]9.8[Formula: see text]kcal/mol and [Formula: see text]9.3[Formula: see text]kcal/mol between curcumin and CCR5 and HIV-1 RNase H/RT, respectively. To examine curcumin's anti-HIV effect and its mechanism <i>in vitro</i>, cell cytotoxicity, transcriptome sequencing, and CCR5 and FOXP3 amounts were assessed at different concentrations of curcumin. In addition, human CCR5 promoter deletion constructs and the FOXP3 expression plasmid pRP-FOXP3 (with an EGFP tag) were generated. Whether FOXP3 DNA binding to the CCR5 promoter was blunted by curcumin was examined using transfection assays employing truncated CCR5 gene promoter constructs, a luciferase reporter assay, and a chromatin immunoprecipitation (ChIP) assay. Furthermore, micromolar concentrations of curcumin inactivated the nuclear transcription factor FOXP3, which resulted in decreased expression of CCR5 in Jurkat cells. Moreover, curcumin inhibited PI3K-AKT activation and its downstream target FOXP3. These findings provide mechanistic evidence encouraging further assessment of curcumin as a dietary agent used to reduce the virulence of CCR5-tropic HIV-1. Curcumin-mediated FOXP3 degradation was also reflected in its functions, namely, CCR5 promoter transactivation and HIV-1 virion production. Furthermore, curcumin inhibition of CCR5 and HIV-1 might constitute a potential therapeutic strategy for reducing HIV progression.</p>\",\"PeriodicalId\":50814,\"journal\":{\"name\":\"American Journal of Chinese Medicine\",\"volume\":\"51 5\",\"pages\":\"1189-1209\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Chinese Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1142/S0192415X23500544\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"INTEGRATIVE & COMPLEMENTARY MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Chinese Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1142/S0192415X23500544","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
Curcuma Longa Induces the Transcription Factor FOXP3 to Downregulate Human Chemokine CCR5 Expression and Inhibit HIV-1 Infection.
HIV mutations occur frequently despite the substantial success of combination antiretroviral therapy, which significantly impairs HIV progression. Failure to develop specific vaccines, the occurrence of drug-resistant strains, and the high incidence of adverse effects due to combination antiviral therapy regimens call for novel and safer antivirals. Natural products are an important source of new anti-infective agents. For instance, curcumin inhibits HIV and inflammation in cell culture assays. Curcumin, the principal constituent of the dried rhizomes of Curcuma longa L. (turmeric), is known as a strong anti-oxidant and anti-inflammatory agent with different pharmacological effects. This work aims to assess curcumin's inhibitory effects on HIV in vitro and to explore the underpinning mechanism, focusing on CCR5 and the transcription factor forkhead box protein P3 (FOXP3). First, curcumin and the RT inhibitor zidovudine (AZT) were evaluated for their inhibitory properties. HIV-1 pseudovirus infectivity was determined by green fluorescence and luciferase activity measurements in HEK293T cells. AZT was used as a positive control that inhibited HIV-1 pseudoviruses dose-dependently, with IC50 values in the nanomolar range. Then, a molecular docking analysis was carried out to assess the binding affinities of curcumin for CCR5 and HIV-1 RNase H/RT. The anti-HIV activity assay showed that curcumin inhibited HIV-1 infection, and the molecular docking analysis revealed equilibrium dissociation constants of [Formula: see text]9.8[Formula: see text]kcal/mol and [Formula: see text]9.3[Formula: see text]kcal/mol between curcumin and CCR5 and HIV-1 RNase H/RT, respectively. To examine curcumin's anti-HIV effect and its mechanism in vitro, cell cytotoxicity, transcriptome sequencing, and CCR5 and FOXP3 amounts were assessed at different concentrations of curcumin. In addition, human CCR5 promoter deletion constructs and the FOXP3 expression plasmid pRP-FOXP3 (with an EGFP tag) were generated. Whether FOXP3 DNA binding to the CCR5 promoter was blunted by curcumin was examined using transfection assays employing truncated CCR5 gene promoter constructs, a luciferase reporter assay, and a chromatin immunoprecipitation (ChIP) assay. Furthermore, micromolar concentrations of curcumin inactivated the nuclear transcription factor FOXP3, which resulted in decreased expression of CCR5 in Jurkat cells. Moreover, curcumin inhibited PI3K-AKT activation and its downstream target FOXP3. These findings provide mechanistic evidence encouraging further assessment of curcumin as a dietary agent used to reduce the virulence of CCR5-tropic HIV-1. Curcumin-mediated FOXP3 degradation was also reflected in its functions, namely, CCR5 promoter transactivation and HIV-1 virion production. Furthermore, curcumin inhibition of CCR5 and HIV-1 might constitute a potential therapeutic strategy for reducing HIV progression.
期刊介绍:
The American Journal of Chinese Medicine, which is defined in its broadest sense possible, publishes original articles and essays relating to traditional or ethnomedicine of all cultures. Areas of particular interest include:
Basic scientific and clinical research in indigenous medical techniques, therapeutic procedures, medicinal plants, and traditional medical theories and concepts;
Multidisciplinary study of medical practice and health care, especially from historical, cultural, public health, and socioeconomic perspectives;
International policy implications of comparative studies of medicine in all cultures, including such issues as health in developing countries, affordability and transferability of health-care techniques and concepts;
Translating scholarly ancient texts or modern publications on ethnomedicine.
The American Journal of Chinese Medicine will consider for publication a broad range of scholarly contributions, including original scientific research papers, review articles, editorial comments, social policy statements, brief news items, bibliographies, research guides, letters to the editors, book reviews, and selected reprints.