{"title":"基于混合表示的互补整合策略的药物性肝损伤的计算机预测。","authors":"Yaxin Gu, Yimeng Wang, Zengrui Wu, Weihua Li, Guixia Liu, Yun Tang","doi":"10.1002/minf.202200284","DOIUrl":null,"url":null,"abstract":"<p><p>Drug-induced liver injury (DILI) is one of the major causes of drug withdrawals, acute liver injury and blackbox warnings. Clinical diagnosis of DILI is a huge challenge due to the complex pathogenesis and lack of specific biomarkers. In recent years, machine learning methods have been used for DILI risk assessment, but the model generalization does not perform satisfactorily. In this study, we constructed a large DILI data set and proposed an integration strategy based on hybrid representations for DILI prediction (HR-DILI). Benefited from feature integration, the hybrid graph neural network models outperformed single representation-based models, among which hybrid-GraphSAGE showed balanced performance in cross-validation with AUC (area under the curve) as 0.804±0.019. In the external validation set, HR-DILI improved the AUC by 6.4 %-35.9 % compared to the base model with a single representation. Compared with published DILI prediction models, HR-DILI had better and balanced performance. The performance of local models for natural products and synthetic compounds were also explored. Furthermore, eight key descriptors and six structural alerts associated with DILI were analyzed to increase the interpretability of the models. The improved performance of HR-DILI indicated that it would provide reliable guidance for DILI risk assessment.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In silico prediction of drug-induced liver injury with a complementary integration strategy based on hybrid representation.\",\"authors\":\"Yaxin Gu, Yimeng Wang, Zengrui Wu, Weihua Li, Guixia Liu, Yun Tang\",\"doi\":\"10.1002/minf.202200284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drug-induced liver injury (DILI) is one of the major causes of drug withdrawals, acute liver injury and blackbox warnings. Clinical diagnosis of DILI is a huge challenge due to the complex pathogenesis and lack of specific biomarkers. In recent years, machine learning methods have been used for DILI risk assessment, but the model generalization does not perform satisfactorily. In this study, we constructed a large DILI data set and proposed an integration strategy based on hybrid representations for DILI prediction (HR-DILI). Benefited from feature integration, the hybrid graph neural network models outperformed single representation-based models, among which hybrid-GraphSAGE showed balanced performance in cross-validation with AUC (area under the curve) as 0.804±0.019. In the external validation set, HR-DILI improved the AUC by 6.4 %-35.9 % compared to the base model with a single representation. Compared with published DILI prediction models, HR-DILI had better and balanced performance. The performance of local models for natural products and synthetic compounds were also explored. Furthermore, eight key descriptors and six structural alerts associated with DILI were analyzed to increase the interpretability of the models. The improved performance of HR-DILI indicated that it would provide reliable guidance for DILI risk assessment.</p>\",\"PeriodicalId\":18853,\"journal\":{\"name\":\"Molecular Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/minf.202200284\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202200284","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
In silico prediction of drug-induced liver injury with a complementary integration strategy based on hybrid representation.
Drug-induced liver injury (DILI) is one of the major causes of drug withdrawals, acute liver injury and blackbox warnings. Clinical diagnosis of DILI is a huge challenge due to the complex pathogenesis and lack of specific biomarkers. In recent years, machine learning methods have been used for DILI risk assessment, but the model generalization does not perform satisfactorily. In this study, we constructed a large DILI data set and proposed an integration strategy based on hybrid representations for DILI prediction (HR-DILI). Benefited from feature integration, the hybrid graph neural network models outperformed single representation-based models, among which hybrid-GraphSAGE showed balanced performance in cross-validation with AUC (area under the curve) as 0.804±0.019. In the external validation set, HR-DILI improved the AUC by 6.4 %-35.9 % compared to the base model with a single representation. Compared with published DILI prediction models, HR-DILI had better and balanced performance. The performance of local models for natural products and synthetic compounds were also explored. Furthermore, eight key descriptors and six structural alerts associated with DILI were analyzed to increase the interpretability of the models. The improved performance of HR-DILI indicated that it would provide reliable guidance for DILI risk assessment.
期刊介绍:
Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010.
Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation.
The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.