André Wendindondé Nana, Szu Yuan Wu, Yu-Chen Sh Yang, Yu-Tang Chin, Tsai-Mu Cheng, Yih Ho, Wen-Shan Li, Yu-Min Liao, Yi-Ru Chen, Ya-Jung Shih, Yun-Ru Liu, Jens Pedersen, Sandra Incerpi, Aleck Hercbergs, Leroy F Liu, Jacqueline Whang-Peng, Paul J Davis, Hung-Yun Lin
{"title":"纳米二氨基四乙酸(NDAT)通过作用于结直肠癌RRM2通路增强白藜芦醇诱导的抗增殖","authors":"André Wendindondé Nana, Szu Yuan Wu, Yu-Chen Sh Yang, Yu-Tang Chin, Tsai-Mu Cheng, Yih Ho, Wen-Shan Li, Yu-Min Liao, Yi-Ru Chen, Ya-Jung Shih, Yun-Ru Liu, Jens Pedersen, Sandra Incerpi, Aleck Hercbergs, Leroy F Liu, Jacqueline Whang-Peng, Paul J Davis, Hung-Yun Lin","doi":"10.1007/s12672-018-0334-9","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer resistance to chemotherapeutic agents is a major issue in the management of cancer patients. Overexpression of the ribonucleotide reductase regulatory subunit M2 (RRM2) has been associated with aggressive cancer behavior and chemoresistance. Nano-diamino-tetrac (NDAT) is a nanoparticulate derivative of tetraiodothyroacetic acid (tetrac), which exerts anticancer properties via several mechanisms and downregulates RRM2 gene expression in cancer cells. Resveratrol is a stilbenoid phytoalexin which binds to a specific site on the cell surface integrin αvβ3 to trigger cancer cell death via nuclear translocation of COX-2. Here we report that resveratrol paradoxically activates RRM2 gene expression and protein translation in colon cancer cells. This unanticipated effect inhibits resveratrol-induced COX-2 nuclear accumulation. RRM2 downregulation, whether achieved by RNA interference or treatment with NDAT, enhanced resveratrol-induced COX-2 gene expression and nuclear uptake which is essential to integrin αvβ3-mediated-resveratrol-induced antiproliferation in cancer cells. Elsewhere, NDAT downregulated resveratrol-induced RRM2 expression in vivo but potentiated the anticancer effect of the stilbene. These findings suggest that RRM2 appears as a cancer cell defense mechanism which can hinder the anticancer effect of the stilbene via the integrin αvβ3 axis. Furthermore, the antagonistic effect of RRM2 against resveratrol is counteracted by the administration of NDAT.</p>","PeriodicalId":13060,"journal":{"name":"Hormones & Cancer","volume":"9 5","pages":"349-360"},"PeriodicalIF":3.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12672-018-0334-9","citationCount":"20","resultStr":"{\"title\":\"Nano-Diamino-Tetrac (NDAT) Enhances Resveratrol-Induced Antiproliferation by Action on the RRM2 Pathway in Colorectal Cancers.\",\"authors\":\"André Wendindondé Nana, Szu Yuan Wu, Yu-Chen Sh Yang, Yu-Tang Chin, Tsai-Mu Cheng, Yih Ho, Wen-Shan Li, Yu-Min Liao, Yi-Ru Chen, Ya-Jung Shih, Yun-Ru Liu, Jens Pedersen, Sandra Incerpi, Aleck Hercbergs, Leroy F Liu, Jacqueline Whang-Peng, Paul J Davis, Hung-Yun Lin\",\"doi\":\"10.1007/s12672-018-0334-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer resistance to chemotherapeutic agents is a major issue in the management of cancer patients. Overexpression of the ribonucleotide reductase regulatory subunit M2 (RRM2) has been associated with aggressive cancer behavior and chemoresistance. Nano-diamino-tetrac (NDAT) is a nanoparticulate derivative of tetraiodothyroacetic acid (tetrac), which exerts anticancer properties via several mechanisms and downregulates RRM2 gene expression in cancer cells. Resveratrol is a stilbenoid phytoalexin which binds to a specific site on the cell surface integrin αvβ3 to trigger cancer cell death via nuclear translocation of COX-2. Here we report that resveratrol paradoxically activates RRM2 gene expression and protein translation in colon cancer cells. This unanticipated effect inhibits resveratrol-induced COX-2 nuclear accumulation. RRM2 downregulation, whether achieved by RNA interference or treatment with NDAT, enhanced resveratrol-induced COX-2 gene expression and nuclear uptake which is essential to integrin αvβ3-mediated-resveratrol-induced antiproliferation in cancer cells. Elsewhere, NDAT downregulated resveratrol-induced RRM2 expression in vivo but potentiated the anticancer effect of the stilbene. These findings suggest that RRM2 appears as a cancer cell defense mechanism which can hinder the anticancer effect of the stilbene via the integrin αvβ3 axis. Furthermore, the antagonistic effect of RRM2 against resveratrol is counteracted by the administration of NDAT.</p>\",\"PeriodicalId\":13060,\"journal\":{\"name\":\"Hormones & Cancer\",\"volume\":\"9 5\",\"pages\":\"349-360\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12672-018-0334-9\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hormones & Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12672-018-0334-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hormones & Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12672-018-0334-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Nano-Diamino-Tetrac (NDAT) Enhances Resveratrol-Induced Antiproliferation by Action on the RRM2 Pathway in Colorectal Cancers.
Cancer resistance to chemotherapeutic agents is a major issue in the management of cancer patients. Overexpression of the ribonucleotide reductase regulatory subunit M2 (RRM2) has been associated with aggressive cancer behavior and chemoresistance. Nano-diamino-tetrac (NDAT) is a nanoparticulate derivative of tetraiodothyroacetic acid (tetrac), which exerts anticancer properties via several mechanisms and downregulates RRM2 gene expression in cancer cells. Resveratrol is a stilbenoid phytoalexin which binds to a specific site on the cell surface integrin αvβ3 to trigger cancer cell death via nuclear translocation of COX-2. Here we report that resveratrol paradoxically activates RRM2 gene expression and protein translation in colon cancer cells. This unanticipated effect inhibits resveratrol-induced COX-2 nuclear accumulation. RRM2 downregulation, whether achieved by RNA interference or treatment with NDAT, enhanced resveratrol-induced COX-2 gene expression and nuclear uptake which is essential to integrin αvβ3-mediated-resveratrol-induced antiproliferation in cancer cells. Elsewhere, NDAT downregulated resveratrol-induced RRM2 expression in vivo but potentiated the anticancer effect of the stilbene. These findings suggest that RRM2 appears as a cancer cell defense mechanism which can hinder the anticancer effect of the stilbene via the integrin αvβ3 axis. Furthermore, the antagonistic effect of RRM2 against resveratrol is counteracted by the administration of NDAT.
期刊介绍:
Hormones and Cancer is a unique multidisciplinary translational journal featuring basic science, pre-clinical, epidemiological, and clinical research papers. It covers all aspects of the interface of Endocrinology and Oncology. Thus, the journal covers two main areas of research: Endocrine tumors (benign & malignant tumors of hormone secreting endocrine organs) and the effects of hormones on any type of tumor. We welcome all types of studies related to these fields, but our particular attention is on translational aspects of research. In addition to basic, pre-clinical, and epidemiological studies, we encourage submission of clinical studies including those that comprise small series of tumors in rare endocrine neoplasias and/or negative or confirmatory results provided that they significantly enhance our understanding of endocrine aspects of oncology. The journal does not publish case studies.