{"title":"机器学习方法在药物靶点相互作用预测中的比较分析综述。","authors":"Zahra Nikraftar, Mohammad Reza Keyvanpour","doi":"10.2174/1573409919666230111164340","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Predicting drug-target interactions (DTIs) is an important topic of study in the field of drug discovery and development. Since DTI prediction in vitro</i> studies is very expensive and time-consuming, computational techniques for predicting drug-target interactions have been introduced successfully to solve these problems and have received extensive attention.</p><p><strong>Objective: </strong>In this paper, we provided a summary of databases that are useful in DTI prediction and intend to concentrate on machine learning methods as a chemogenomic approach in drug discovery. Unlike previous surveys, we propose a comparative analytical framework based on the evaluation criteria.</p><p><strong>Methods: </strong>In our suggested framework, there are three stages to follow: First, we present a comprehensive categorization of machine learning-based techniques as a chemogenomic approach for drug-target interaction prediction problems; Second, to evaluate the proposed classification, several general criteria are provided; Third, unlike other surveys, according to the evaluation criteria introduced in the previous stage, a comparative analytical evaluation is performed for each approach.</p><p><strong>Results: </strong>This systematic research covers the earliest, most recent, and outstanding techniques in the DTI prediction problem and identifies the advantages and weaknesses of each approach separately. Additionally, it can be helpful in the effective selection and improvement of DTI prediction techniques, which is the main superiority of the proposed framework.</p><p><strong>Conclusion: </strong>This paper gives a thorough overview to serve as a guide and reference for other researchers by providing an analytical framework which can help to select, compare, and improve DTI prediction methods.</p>","PeriodicalId":10886,"journal":{"name":"Current computer-aided drug design","volume":"19 5","pages":"325-355"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparative Analytical Review on Machine Learning Methods in Drugtarget Interactions Prediction.\",\"authors\":\"Zahra Nikraftar, Mohammad Reza Keyvanpour\",\"doi\":\"10.2174/1573409919666230111164340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Predicting drug-target interactions (DTIs) is an important topic of study in the field of drug discovery and development. Since DTI prediction in vitro</i> studies is very expensive and time-consuming, computational techniques for predicting drug-target interactions have been introduced successfully to solve these problems and have received extensive attention.</p><p><strong>Objective: </strong>In this paper, we provided a summary of databases that are useful in DTI prediction and intend to concentrate on machine learning methods as a chemogenomic approach in drug discovery. Unlike previous surveys, we propose a comparative analytical framework based on the evaluation criteria.</p><p><strong>Methods: </strong>In our suggested framework, there are three stages to follow: First, we present a comprehensive categorization of machine learning-based techniques as a chemogenomic approach for drug-target interaction prediction problems; Second, to evaluate the proposed classification, several general criteria are provided; Third, unlike other surveys, according to the evaluation criteria introduced in the previous stage, a comparative analytical evaluation is performed for each approach.</p><p><strong>Results: </strong>This systematic research covers the earliest, most recent, and outstanding techniques in the DTI prediction problem and identifies the advantages and weaknesses of each approach separately. Additionally, it can be helpful in the effective selection and improvement of DTI prediction techniques, which is the main superiority of the proposed framework.</p><p><strong>Conclusion: </strong>This paper gives a thorough overview to serve as a guide and reference for other researchers by providing an analytical framework which can help to select, compare, and improve DTI prediction methods.</p>\",\"PeriodicalId\":10886,\"journal\":{\"name\":\"Current computer-aided drug design\",\"volume\":\"19 5\",\"pages\":\"325-355\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current computer-aided drug design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1573409919666230111164340\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current computer-aided drug design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1573409919666230111164340","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
A Comparative Analytical Review on Machine Learning Methods in Drugtarget Interactions Prediction.
Background: Predicting drug-target interactions (DTIs) is an important topic of study in the field of drug discovery and development. Since DTI prediction in vitro studies is very expensive and time-consuming, computational techniques for predicting drug-target interactions have been introduced successfully to solve these problems and have received extensive attention.
Objective: In this paper, we provided a summary of databases that are useful in DTI prediction and intend to concentrate on machine learning methods as a chemogenomic approach in drug discovery. Unlike previous surveys, we propose a comparative analytical framework based on the evaluation criteria.
Methods: In our suggested framework, there are three stages to follow: First, we present a comprehensive categorization of machine learning-based techniques as a chemogenomic approach for drug-target interaction prediction problems; Second, to evaluate the proposed classification, several general criteria are provided; Third, unlike other surveys, according to the evaluation criteria introduced in the previous stage, a comparative analytical evaluation is performed for each approach.
Results: This systematic research covers the earliest, most recent, and outstanding techniques in the DTI prediction problem and identifies the advantages and weaknesses of each approach separately. Additionally, it can be helpful in the effective selection and improvement of DTI prediction techniques, which is the main superiority of the proposed framework.
Conclusion: This paper gives a thorough overview to serve as a guide and reference for other researchers by providing an analytical framework which can help to select, compare, and improve DTI prediction methods.
期刊介绍:
Aims & Scope
Current Computer-Aided Drug Design aims to publish all the latest developments in drug design based on computational techniques. The field of computer-aided drug design has had extensive impact in the area of drug design.
Current Computer-Aided Drug Design is an essential journal for all medicinal chemists who wish to be kept informed and up-to-date with all the latest and important developments in computer-aided methodologies and their applications in drug discovery. Each issue contains a series of timely, in-depth reviews, original research articles and letter articles written by leaders in the field, covering a range of computational techniques for drug design, screening, ADME studies, theoretical chemistry; computational chemistry; computer and molecular graphics; molecular modeling; protein engineering; drug design; expert systems; general structure-property relationships; molecular dynamics; chemical database development and usage etc., providing excellent rationales for drug development.