焦虑相关障碍患者的交感神经控制。

IF 4.2 2区 医学 Q1 PHYSIOLOGY
Jeremy A Bigalke, Jason R Carter
{"title":"焦虑相关障碍患者的交感神经控制。","authors":"Jeremy A Bigalke,&nbsp;Jason R Carter","doi":"10.1002/cphy.c210027","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous conceptual models are used to describe the dynamic responsiveness of physiological systems to environmental pressures, originating with Claude Bernard's milieu intérieur and extending to more recent models such as allostasis. The impact of stress and anxiety upon these regulatory processes has both basic science and clinical relevance, extending from the pioneering work of Hans Selye who advanced the concept that stress can significantly impact physiological health and function. Of particular interest within the current article, anxiety is independently associated with cardiovascular risk, yet mechanisms underlying these associations remain equivocal. This link between anxiety and cardiovascular risk is relevant given the high prevalence of anxiety in the general population, as well as its early age of onset. Chronically anxious populations, such as those with anxiety disorders (i.e., generalized anxiety disorder, panic disorder, specific phobias, etc.) offer a human model that interrogates the deleterious effects that chronic stress and allostatic load can have on the nervous system and cardiovascular function. Further, while many of these disorders do not appear to exhibit baseline alterations in sympathetic neural activity, reactivity to mental stress offers insights into applicable, real-world scenarios in which heightened sympathetic reactivity may predispose those individuals to elevated cardiovascular risk. This article also assesses behavioral and lifestyle modifications that have been shown to concurrently improve anxiety symptoms, as well as sympathetic control. Lastly, future directions of research will be discussed, with a focus on better integration of psychological factors within physiological studies examining anxiety and neural cardiovascular health. © 2022 American Physiological Society. Compr Physiol 12:1-33, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Sympathetic Neural Control in Humans with Anxiety-Related Disorders.\",\"authors\":\"Jeremy A Bigalke,&nbsp;Jason R Carter\",\"doi\":\"10.1002/cphy.c210027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Numerous conceptual models are used to describe the dynamic responsiveness of physiological systems to environmental pressures, originating with Claude Bernard's milieu intérieur and extending to more recent models such as allostasis. The impact of stress and anxiety upon these regulatory processes has both basic science and clinical relevance, extending from the pioneering work of Hans Selye who advanced the concept that stress can significantly impact physiological health and function. Of particular interest within the current article, anxiety is independently associated with cardiovascular risk, yet mechanisms underlying these associations remain equivocal. This link between anxiety and cardiovascular risk is relevant given the high prevalence of anxiety in the general population, as well as its early age of onset. Chronically anxious populations, such as those with anxiety disorders (i.e., generalized anxiety disorder, panic disorder, specific phobias, etc.) offer a human model that interrogates the deleterious effects that chronic stress and allostatic load can have on the nervous system and cardiovascular function. Further, while many of these disorders do not appear to exhibit baseline alterations in sympathetic neural activity, reactivity to mental stress offers insights into applicable, real-world scenarios in which heightened sympathetic reactivity may predispose those individuals to elevated cardiovascular risk. This article also assesses behavioral and lifestyle modifications that have been shown to concurrently improve anxiety symptoms, as well as sympathetic control. Lastly, future directions of research will be discussed, with a focus on better integration of psychological factors within physiological studies examining anxiety and neural cardiovascular health. © 2022 American Physiological Society. Compr Physiol 12:1-33, 2022.</p>\",\"PeriodicalId\":10573,\"journal\":{\"name\":\"Comprehensive Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2021-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comprehensive Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/cphy.c210027\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comprehensive Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cphy.c210027","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 5

摘要

许多概念模型被用来描述生理系统对环境压力的动态响应,这些模型起源于克劳德·伯纳德(Claude Bernard)的环境内变,并扩展到最近的模型,如适应平衡(allostasis)。压力和焦虑对这些调节过程的影响既有基础科学意义,也有临床意义,从汉斯·塞尔耶(Hans Selye)的开创性工作延伸开来,他提出了压力可以显著影响生理健康和功能的概念。当前文章中特别感兴趣的是,焦虑与心血管风险独立相关,但这些关联的机制仍不明确。考虑到焦虑在普通人群中的高患病率以及发病年龄较早,焦虑与心血管风险之间的联系是相关的。慢性焦虑人群,如那些患有焦虑症(即广泛性焦虑症、恐慌症、特异性恐惧症等)的人群,提供了一个人类模型,探讨慢性压力和适应负荷对神经系统和心血管功能的有害影响。此外,虽然许多这些疾病似乎没有表现出交感神经活动的基线改变,但对精神压力的反应性为适用的,现实世界的场景提供了见解,在这些场景中,交感神经反应性的增强可能使这些个体易患心血管疾病。这篇文章也评估了行为和生活方式的改变已经被证明可以同时改善焦虑症状,以及交感神经控制。最后,讨论了未来的研究方向,重点是在检查焦虑和神经心血管健康的生理研究中更好地整合心理因素。©2022美国生理学会。物理学报(英文版),2012。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sympathetic Neural Control in Humans with Anxiety-Related Disorders.

Numerous conceptual models are used to describe the dynamic responsiveness of physiological systems to environmental pressures, originating with Claude Bernard's milieu intérieur and extending to more recent models such as allostasis. The impact of stress and anxiety upon these regulatory processes has both basic science and clinical relevance, extending from the pioneering work of Hans Selye who advanced the concept that stress can significantly impact physiological health and function. Of particular interest within the current article, anxiety is independently associated with cardiovascular risk, yet mechanisms underlying these associations remain equivocal. This link between anxiety and cardiovascular risk is relevant given the high prevalence of anxiety in the general population, as well as its early age of onset. Chronically anxious populations, such as those with anxiety disorders (i.e., generalized anxiety disorder, panic disorder, specific phobias, etc.) offer a human model that interrogates the deleterious effects that chronic stress and allostatic load can have on the nervous system and cardiovascular function. Further, while many of these disorders do not appear to exhibit baseline alterations in sympathetic neural activity, reactivity to mental stress offers insights into applicable, real-world scenarios in which heightened sympathetic reactivity may predispose those individuals to elevated cardiovascular risk. This article also assesses behavioral and lifestyle modifications that have been shown to concurrently improve anxiety symptoms, as well as sympathetic control. Lastly, future directions of research will be discussed, with a focus on better integration of psychological factors within physiological studies examining anxiety and neural cardiovascular health. © 2022 American Physiological Society. Compr Physiol 12:1-33, 2022.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.50
自引率
0.00%
发文量
38
审稿时长
6-12 weeks
期刊介绍: Comprehensive Physiology is the most authoritative and comprehensive collection of physiology information ever assembled, and uses the most powerful features of review journals and electronic reference works to cover the latest key developments in the field, through the most authoritative articles on the subjects covered. This makes Comprehensive Physiology a valued reference work on the evolving science of physiology for both researchers and clinicians. It also provides a useful teaching tool for instructors and an informative resource for medical students and other students in the life and health sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信