具有依赖性普查的生存结果的多阶段最佳动态治疗制度。

IF 2.4 2区 数学 Q2 BIOLOGY
Biometrika Pub Date : 2022-08-13 eCollection Date: 2023-06-01 DOI:10.1093/biomet/asac047
Hunyong Cho, Shannon T Holloway, David J Couper, Michael R Kosorok
{"title":"具有依赖性普查的生存结果的多阶段最佳动态治疗制度。","authors":"Hunyong Cho, Shannon T Holloway, David J Couper, Michael R Kosorok","doi":"10.1093/biomet/asac047","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a reinforcement learning method for estimating an optimal dynamic treatment regime for survival outcomes with dependent censoring. The estimator allows the failure time to be conditionally independent of censoring and dependent on the treatment decision times, supports a flexible number of treatment arms and treatment stages, and can maximize either the mean survival time or the survival probability at a certain time-point. The estimator is constructed using generalized random survival forests and can have polynomial rates of convergence. Simulations and analysis of the Atherosclerosis Risk in Communities study data suggest that the new estimator brings higher expected outcomes than existing methods in various settings.</p>","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":"110 2","pages":"395-410"},"PeriodicalIF":2.4000,"publicationDate":"2022-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10183834/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-stage optimal dynamic treatment regimes for survival outcomes with dependent censoring.\",\"authors\":\"Hunyong Cho, Shannon T Holloway, David J Couper, Michael R Kosorok\",\"doi\":\"10.1093/biomet/asac047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a reinforcement learning method for estimating an optimal dynamic treatment regime for survival outcomes with dependent censoring. The estimator allows the failure time to be conditionally independent of censoring and dependent on the treatment decision times, supports a flexible number of treatment arms and treatment stages, and can maximize either the mean survival time or the survival probability at a certain time-point. The estimator is constructed using generalized random survival forests and can have polynomial rates of convergence. Simulations and analysis of the Atherosclerosis Risk in Communities study data suggest that the new estimator brings higher expected outcomes than existing methods in various settings.</p>\",\"PeriodicalId\":9001,\"journal\":{\"name\":\"Biometrika\",\"volume\":\"110 2\",\"pages\":\"395-410\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10183834/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomet/asac047\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomet/asac047","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种强化学习方法,用于估计具有依赖性普查的生存结果的最佳动态治疗机制。该估计方法允许失败时间有条件地独立于普查并依赖于治疗决策时间,支持灵活的治疗臂和治疗阶段数量,并能最大化平均生存时间或特定时间点的生存概率。该估计器使用广义随机生存林构建,收敛速率为多项式。对 "社区动脉粥样硬化风险 "研究数据的模拟和分析表明,在各种情况下,新的估计器比现有方法带来更高的预期结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-stage optimal dynamic treatment regimes for survival outcomes with dependent censoring.

We propose a reinforcement learning method for estimating an optimal dynamic treatment regime for survival outcomes with dependent censoring. The estimator allows the failure time to be conditionally independent of censoring and dependent on the treatment decision times, supports a flexible number of treatment arms and treatment stages, and can maximize either the mean survival time or the survival probability at a certain time-point. The estimator is constructed using generalized random survival forests and can have polynomial rates of convergence. Simulations and analysis of the Atherosclerosis Risk in Communities study data suggest that the new estimator brings higher expected outcomes than existing methods in various settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrika
Biometrika 生物-生物学
CiteScore
5.50
自引率
3.70%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信