基于梯度的稀疏主成分分析,并扩展到在线学习。

IF 2.4 2区 数学 Q2 BIOLOGY
Biometrika Pub Date : 2022-07-12 eCollection Date: 2023-06-01 DOI:10.1093/biomet/asac041
Yixuan Qiu, Jing Lei, Kathryn Roeder
{"title":"基于梯度的稀疏主成分分析,并扩展到在线学习。","authors":"Yixuan Qiu, Jing Lei, Kathryn Roeder","doi":"10.1093/biomet/asac041","DOIUrl":null,"url":null,"abstract":"<p><p>Sparse principal component analysis is an important technique for simultaneous dimensionality reduction and variable selection with high-dimensional data. In this work we combine the unique geometric structure of the sparse principal component analysis problem with recent advances in convex optimization to develop novel gradient-based sparse principal component analysis algorithms. These algorithms enjoy the same global convergence guarantee as the original alternating direction method of multipliers, and can be more efficiently implemented with the rich toolbox developed for gradient methods from the deep learning literature. Most notably, these gradient-based algorithms can be combined with stochastic gradient descent methods to produce efficient online sparse principal component analysis algorithms with provable numerical and statistical performance guarantees. The practical performance and usefulness of the new algorithms are demonstrated in various simulation studies. As an application, we show how the scalability and statistical accuracy of our method enable us to find interesting functional gene groups in high-dimensional RNA sequencing data.</p>","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":"110 2","pages":"339-360"},"PeriodicalIF":2.4000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10183835/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gradient-based sparse principal component analysis with extensions to online learning.\",\"authors\":\"Yixuan Qiu, Jing Lei, Kathryn Roeder\",\"doi\":\"10.1093/biomet/asac041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sparse principal component analysis is an important technique for simultaneous dimensionality reduction and variable selection with high-dimensional data. In this work we combine the unique geometric structure of the sparse principal component analysis problem with recent advances in convex optimization to develop novel gradient-based sparse principal component analysis algorithms. These algorithms enjoy the same global convergence guarantee as the original alternating direction method of multipliers, and can be more efficiently implemented with the rich toolbox developed for gradient methods from the deep learning literature. Most notably, these gradient-based algorithms can be combined with stochastic gradient descent methods to produce efficient online sparse principal component analysis algorithms with provable numerical and statistical performance guarantees. The practical performance and usefulness of the new algorithms are demonstrated in various simulation studies. As an application, we show how the scalability and statistical accuracy of our method enable us to find interesting functional gene groups in high-dimensional RNA sequencing data.</p>\",\"PeriodicalId\":9001,\"journal\":{\"name\":\"Biometrika\",\"volume\":\"110 2\",\"pages\":\"339-360\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10183835/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomet/asac041\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomet/asac041","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

稀疏主成分分析是同时对高维数据进行降维和变量选择的重要技术。在这项工作中,我们将稀疏主成分分析问题的独特几何结构与凸优化的最新进展相结合,开发了新颖的基于梯度的稀疏主成分分析算法。这些算法与原始的交替方向乘法一样,具有全局收敛性保证,而且可以利用深度学习文献中为梯度方法开发的丰富工具箱更高效地实现。最值得注意的是,这些基于梯度的算法可以与随机梯度下降方法相结合,产生高效的在线稀疏主成分分析算法,并具有可证明的数值和统计性能保证。各种模拟研究证明了新算法的实际性能和实用性。作为一项应用,我们展示了我们方法的可扩展性和统计准确性如何使我们能够在高维 RNA 测序数据中找到有趣的功能基因组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gradient-based sparse principal component analysis with extensions to online learning.

Sparse principal component analysis is an important technique for simultaneous dimensionality reduction and variable selection with high-dimensional data. In this work we combine the unique geometric structure of the sparse principal component analysis problem with recent advances in convex optimization to develop novel gradient-based sparse principal component analysis algorithms. These algorithms enjoy the same global convergence guarantee as the original alternating direction method of multipliers, and can be more efficiently implemented with the rich toolbox developed for gradient methods from the deep learning literature. Most notably, these gradient-based algorithms can be combined with stochastic gradient descent methods to produce efficient online sparse principal component analysis algorithms with provable numerical and statistical performance guarantees. The practical performance and usefulness of the new algorithms are demonstrated in various simulation studies. As an application, we show how the scalability and statistical accuracy of our method enable us to find interesting functional gene groups in high-dimensional RNA sequencing data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrika
Biometrika 生物-生物学
CiteScore
5.50
自引率
3.70%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信