{"title":"X和Y染色体在小鼠雌性生殖细胞系发育中的作用。","authors":"Wataru Yamazaki, Seang Lin Tan, Teruko Taketo","doi":"10.1159/000521151","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In eutherian mammals, the sex chromosome complement, XX and XY, determines sexual differentiation of gonadal primordia into testes and ovaries, which in turn direct differentiation of germ cells into haploid sperm and oocytes, respectively. When gonadal sex is reversed, however, the germ cell sex becomes discordant with the chromosomal sex. XY females in humans are infertile, while XY females in the mouse (Mus musculus) are subfertile or infertile dependent on the cause of sex reversal and the genetic background. This article reviews publications to understand how the sex chromosome complement affects the fertility of XY oocytes by comparing with XX and monosomy X (XO) oocytes.</p><p><strong>Summary: </strong>The results highlight 2 folds disadvantage of XY oocytes over XX oocytes: (1) the X and Y chromosomes fail to pair during the meiotic prophase I, resulting in sex chromosome aneuploidy at the first meiotic division and (2) expression of the Y-linked genes during oocyte growth affects the transcriptome landscape and renders the ooplasmic component incompetent for embryonic development.</p><p><strong>Key message: </strong>The XX chromosome complement gives the oocyte the highest competence for embryonic development.</p>","PeriodicalId":49536,"journal":{"name":"Sexual Development","volume":"16 5-6","pages":"355-364"},"PeriodicalIF":2.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Role of the X and Y Chromosomes in the Female Germ Cell Line Development in the Mouse (Mus musculus).\",\"authors\":\"Wataru Yamazaki, Seang Lin Tan, Teruko Taketo\",\"doi\":\"10.1159/000521151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>In eutherian mammals, the sex chromosome complement, XX and XY, determines sexual differentiation of gonadal primordia into testes and ovaries, which in turn direct differentiation of germ cells into haploid sperm and oocytes, respectively. When gonadal sex is reversed, however, the germ cell sex becomes discordant with the chromosomal sex. XY females in humans are infertile, while XY females in the mouse (Mus musculus) are subfertile or infertile dependent on the cause of sex reversal and the genetic background. This article reviews publications to understand how the sex chromosome complement affects the fertility of XY oocytes by comparing with XX and monosomy X (XO) oocytes.</p><p><strong>Summary: </strong>The results highlight 2 folds disadvantage of XY oocytes over XX oocytes: (1) the X and Y chromosomes fail to pair during the meiotic prophase I, resulting in sex chromosome aneuploidy at the first meiotic division and (2) expression of the Y-linked genes during oocyte growth affects the transcriptome landscape and renders the ooplasmic component incompetent for embryonic development.</p><p><strong>Key message: </strong>The XX chromosome complement gives the oocyte the highest competence for embryonic development.</p>\",\"PeriodicalId\":49536,\"journal\":{\"name\":\"Sexual Development\",\"volume\":\"16 5-6\",\"pages\":\"355-364\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sexual Development\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000521151\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sexual Development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000521151","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Role of the X and Y Chromosomes in the Female Germ Cell Line Development in the Mouse (Mus musculus).
Background: In eutherian mammals, the sex chromosome complement, XX and XY, determines sexual differentiation of gonadal primordia into testes and ovaries, which in turn direct differentiation of germ cells into haploid sperm and oocytes, respectively. When gonadal sex is reversed, however, the germ cell sex becomes discordant with the chromosomal sex. XY females in humans are infertile, while XY females in the mouse (Mus musculus) are subfertile or infertile dependent on the cause of sex reversal and the genetic background. This article reviews publications to understand how the sex chromosome complement affects the fertility of XY oocytes by comparing with XX and monosomy X (XO) oocytes.
Summary: The results highlight 2 folds disadvantage of XY oocytes over XX oocytes: (1) the X and Y chromosomes fail to pair during the meiotic prophase I, resulting in sex chromosome aneuploidy at the first meiotic division and (2) expression of the Y-linked genes during oocyte growth affects the transcriptome landscape and renders the ooplasmic component incompetent for embryonic development.
Key message: The XX chromosome complement gives the oocyte the highest competence for embryonic development.
期刊介绍:
Recent discoveries in experimental and clinical research have led to impressive advances in our knowledge of the genetic and environmental mechanisms governing sex determination and differentiation, their evolution as well as the mutations or endocrine and metabolic abnormalities that interfere with normal gonadal development. ‘Sexual Development’ provides a unique forum for this rapidly expanding field. Its broad scope covers all aspects of genetics, molecular biology, embryology, endocrinology, evolution and pathology of sex determination and differentiation in humans and animals. It publishes high-quality original research manuscripts, review articles, short reports, case reports and commentaries. An internationally renowned and multidisciplinary editorial team of three chief editors, ten prominent scientists serving as section editors, and a distinguished panel of editorial board members ensures fast and author-friendly editorial processing and peer reviewing.