Qiaohui Yang, Jialin Li, Sicong Zeng, Zhuo Li, Xiao Liu, Jin Li, Wang Zhou, Yujiao Chai, Di Zhou
{"title":"视网膜类器官模型显示杂合的红视蛋白突变有利于内质网应激诱导的视杆细胞凋亡。","authors":"Qiaohui Yang, Jialin Li, Sicong Zeng, Zhuo Li, Xiao Liu, Jin Li, Wang Zhou, Yujiao Chai, Di Zhou","doi":"10.1089/scd.2023.0034","DOIUrl":null,"url":null,"abstract":"<p><p>Retinitis pigmentosa (RP) is a prevalent inherited retinal degenerative disease resulting from photoreceptor and pigment epithelial apoptosis. The <i>Rhodopsin (RHO)</i> is the most commonly associated pathogenic gene in RP. However, <i>RHO</i> mutations (c.512C>T P171L) have been infrequently reported, and the RP pathogenesis caused by these mutations remains unclear. The objective of this study was to investigate the impact of <i>RHO</i> (c.512C>T P171L) mutation on retinal cell differentiation and elucidate the underlying mechanisms of RP. An effective retinal organoid induction scheme for inhibiting the Wnt signaling pathway was selected for further experiments, and the established cell line <i>ch</i>HES-406 was demonstrated to be heterozygous for <i>RHO</i> c.512C>T, with a normal karyotype and pluripotency potential. Furthermore, the development of <i>ch</i>HES-406 organoids may be delayed, and apoptosis detection and co-localization revealed that <i>ch</i>HES-406 organoids had more apoptotic cells than <i>ch</i>HES-90 in the outer nuclear layer (ONL), mutant RHO protein was mislocalized in the endoplasmic reticulum (ER), and stress-related and apoptotic gene expression increased. Overall, our study elucidated a possible mechanism by which ER stress caused by RHO P171L protein mislocalization may lead to ONL cell apoptosis.</p>","PeriodicalId":21934,"journal":{"name":"Stem cells and development","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Retinal Organoid Models Show Heterozygous <i>Rhodopsin</i> Mutation Favors Endoplasmic Reticulum Stress-Induced Apoptosis in Rods.\",\"authors\":\"Qiaohui Yang, Jialin Li, Sicong Zeng, Zhuo Li, Xiao Liu, Jin Li, Wang Zhou, Yujiao Chai, Di Zhou\",\"doi\":\"10.1089/scd.2023.0034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Retinitis pigmentosa (RP) is a prevalent inherited retinal degenerative disease resulting from photoreceptor and pigment epithelial apoptosis. The <i>Rhodopsin (RHO)</i> is the most commonly associated pathogenic gene in RP. However, <i>RHO</i> mutations (c.512C>T P171L) have been infrequently reported, and the RP pathogenesis caused by these mutations remains unclear. The objective of this study was to investigate the impact of <i>RHO</i> (c.512C>T P171L) mutation on retinal cell differentiation and elucidate the underlying mechanisms of RP. An effective retinal organoid induction scheme for inhibiting the Wnt signaling pathway was selected for further experiments, and the established cell line <i>ch</i>HES-406 was demonstrated to be heterozygous for <i>RHO</i> c.512C>T, with a normal karyotype and pluripotency potential. Furthermore, the development of <i>ch</i>HES-406 organoids may be delayed, and apoptosis detection and co-localization revealed that <i>ch</i>HES-406 organoids had more apoptotic cells than <i>ch</i>HES-90 in the outer nuclear layer (ONL), mutant RHO protein was mislocalized in the endoplasmic reticulum (ER), and stress-related and apoptotic gene expression increased. Overall, our study elucidated a possible mechanism by which ER stress caused by RHO P171L protein mislocalization may lead to ONL cell apoptosis.</p>\",\"PeriodicalId\":21934,\"journal\":{\"name\":\"Stem cells and development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem cells and development\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/scd.2023.0034\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cells and development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/scd.2023.0034","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Retinal Organoid Models Show Heterozygous Rhodopsin Mutation Favors Endoplasmic Reticulum Stress-Induced Apoptosis in Rods.
Retinitis pigmentosa (RP) is a prevalent inherited retinal degenerative disease resulting from photoreceptor and pigment epithelial apoptosis. The Rhodopsin (RHO) is the most commonly associated pathogenic gene in RP. However, RHO mutations (c.512C>T P171L) have been infrequently reported, and the RP pathogenesis caused by these mutations remains unclear. The objective of this study was to investigate the impact of RHO (c.512C>T P171L) mutation on retinal cell differentiation and elucidate the underlying mechanisms of RP. An effective retinal organoid induction scheme for inhibiting the Wnt signaling pathway was selected for further experiments, and the established cell line chHES-406 was demonstrated to be heterozygous for RHO c.512C>T, with a normal karyotype and pluripotency potential. Furthermore, the development of chHES-406 organoids may be delayed, and apoptosis detection and co-localization revealed that chHES-406 organoids had more apoptotic cells than chHES-90 in the outer nuclear layer (ONL), mutant RHO protein was mislocalized in the endoplasmic reticulum (ER), and stress-related and apoptotic gene expression increased. Overall, our study elucidated a possible mechanism by which ER stress caused by RHO P171L protein mislocalization may lead to ONL cell apoptosis.
期刊介绍:
Stem Cells and Development is globally recognized as the trusted source for critical, even controversial coverage of emerging hypotheses and novel findings. With a focus on stem cells of all tissue types and their potential therapeutic applications, the Journal provides clinical, basic, and translational scientists with cutting-edge research and findings.
Stem Cells and Development coverage includes:
Embryogenesis and adult counterparts of this process
Physical processes linking stem cells, primary cell function, and structural development
Hypotheses exploring the relationship between genotype and phenotype
Development of vasculature, CNS, and other germ layer development and defects
Pluripotentiality of embryonic and somatic stem cells
The role of genetic and epigenetic factors in development